Privacy Aware Memory Forensics
- URL: http://arxiv.org/abs/2406.09005v1
- Date: Thu, 13 Jun 2024 11:18:49 GMT
- Title: Privacy Aware Memory Forensics
- Authors: Janardhan Kalikiri, Gaurav Varshney, Jaswinder Kour, Tarandeep Singh,
- Abstract summary: Recent surveys indicate that 60% of data breaches are primarily caused by malicious insider threats.
In this research, we present a novel solution to detect data leakages by insiders in an organization.
Our approach captures the RAM of the insiders device and analyses it for sensitive information leaks from a host system.
- Score: 3.382960674045592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, insider threats and attacks have been increasing in terms of frequency and cost to the corporate business. The utilization of end-to-end encrypted instant messaging applications (WhatsApp, Telegram, VPN) by malicious insiders raised data breach incidents exponentially. The Securities and Exchange Board of India (SEBI) investigated reports on such data leak incidents and reported about twelve companies where earnings data and financial information were leaked using WhatsApp messages. Recent surveys indicate that 60% of data breaches are primarily caused by malicious insider threats. Especially, in the case of the defense environment, information leaks by insiders will jeopardize the countrys national security. Sniffing of network and host-based activities will not work in an insider threat detection environment due to end-to-end encryption. Memory forensics allows access to the messages sent or received over an end-to-end encrypted environment but with a total compromise of the users privacy. In this research, we present a novel solution to detect data leakages by insiders in an organization. Our approach captures the RAM of the insiders device and analyses it for sensitive information leaks from a host system while maintaining the users privacy. Sensitive data leaks are identified with context using a deep learning model. The feasibility and effectiveness of the proposed idea have been demonstrated with the help of a military use case. The proposed architecture can however be used across various use cases with minor modifications.
Related papers
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
This paper characterizes the impact of Differential Privacy on bias and unfairness in the context of releasing information about networks.
We consider a network release problem where the network structure is known to all, but the weights on edges must be released privately.
Our work provides theoretical foundations and empirical evidence into the bias and unfairness arising due to privacy in these networked decision problems.
arXiv Detail & Related papers (2024-08-08T08:37:37Z) - Root causes, ongoing difficulties, proactive prevention techniques, and emerging trends of enterprise data breaches [0.0]
Businesses now consider data to be a crucial asset, and any breach of this data can have dire repercussions.
Enterprises now place a high premium on detecting and preventing data loss due to the growing amount of data and the increasing frequency of data breaches.
This review attempts to highlight interesting prospects and offer insightful information to those who are interested in learning about the risks that businesses face from data leaks.
arXiv Detail & Related papers (2023-11-27T20:34:10Z) - Optimizing Traversing and Retrieval Speed of Large Breached Databases [0.0]
Breached data refers to the unauthorized access, theft, or exposure of confidential or sensitive information.
Data breaches are often the result of malicious activities such as hacking, phishing, insider threats, malware, or physical theft.
Breached records are commonly sold on the dark web or made available on various public forums.
arXiv Detail & Related papers (2023-09-06T13:11:18Z) - Bugs in our Pockets: The Risks of Client-Side Scanning [8.963278092315946]
We argue that client-side scanning (CSS) neither guarantees efficacious crime prevention nor prevents surveillance.
CSS by its nature creates serious security and privacy risks for all society.
There are multiple ways in which client-side scanning can fail, can be evaded, and can be abused.
arXiv Detail & Related papers (2021-10-14T15:18:49Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - Privacy-accuracy trade-offs in noisy digital exposure notifications [3.04585143845864]
There is interest in using the power of mobile phones to automate the contact-tracing process.
The rough idea is simple: use Bluetooth or other data-exchange technologies to record contacts between users, enable users to report positive diagnoses, and alert users who have been exposed to sick users.
Although designing practical protocols is of crucial importance, it is essential to realize that notifying users about exposure events may itself leak confidential information.
arXiv Detail & Related papers (2020-11-08T15:00:38Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
In pandemic situations, such as the COVID-19 and Ebola outbreak, the action related to sharing health data is crucial to avoid the massive infection and decrease the number of deaths.
In this sense, permissioned blockchain technology emerges to empower users to get their rights providing data ownership, transparency, and security through an immutable, unified, and distributed database ruled by smart contracts.
arXiv Detail & Related papers (2020-10-22T13:19:38Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
Google and Apple have jointly provided an API for exposure notification in order to implement decentralized contract tracing apps using Bluetooth Low Energy.
We demonstrate that in real-world scenarios the GAP design is vulnerable to (i) profiling and possibly de-anonymizing persons, and (ii) relay-based wormhole attacks that basically can generate fake contacts.
arXiv Detail & Related papers (2020-06-10T16:05:05Z) - Learning With Differential Privacy [3.618133010429131]
Differential privacy comes to the rescue with a proper promise of protection against leakage.
It uses a randomized response technique at the time of collection of the data which promises strong privacy with better utility.
arXiv Detail & Related papers (2020-06-10T02:04:13Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
Despite data protection laws and an acknowledged right to privacy, trading personal information has become a business equated with "trading oil"
An open conflict is arising between business demands for data and a desire for privacy.
We propose and test a vision of a personal information market with privacy.
arXiv Detail & Related papers (2020-05-13T13:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.