論文の概要: Evidential uncertainty sampling for active learning
- arxiv url: http://arxiv.org/abs/2309.12494v2
- Date: Sat, 25 May 2024 08:52:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 11:58:46.255973
- Title: Evidential uncertainty sampling for active learning
- Title(参考訳): アクティブラーニングのための証拠不確実性サンプリング
- Authors: Arthur Hoarau, Vincent Lemaire, Arnaud Martin, Jean-Christophe Dubois, Yolande Le Gall,
- Abstract要約: アクティブラーニングにおける最近の研究は、モデル不確実性を再現可能で既約の不確実性に分解することに焦点を当てている。
本稿では,観測への依存を排除しつつ,計算過程を簡素化することを目的とする。
- 参考スコア(独自算出の注目度): 4.271684331748043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies in active learning, particularly in uncertainty sampling, have focused on the decomposition of model uncertainty into reducible and irreducible uncertainties. In this paper, the aim is to simplify the computational process while eliminating the dependence on observations. Crucially, the inherent uncertainty in the labels is considered, the uncertainty of the oracles. Two strategies are proposed, sampling by Klir uncertainty, which tackles the exploration-exploitation dilemma, and sampling by evidential epistemic uncertainty, which extends the concept of reducible uncertainty within the evidential framework, both using the theory of belief functions. Experimental results in active learning demonstrate that our proposed method can outperform uncertainty sampling.
- Abstract(参考訳): アクティブラーニング、特に不確実性サンプリングにおける最近の研究は、モデル不確実性を再現可能かつ既約不確実性に分解することに焦点を当てている。
本稿では,観測への依存を排除しつつ,計算過程を簡素化することを目的とする。
重要なことに、ラベルに固有の不確実性、すなわちオラクルの不確実性が考慮されている。
探索・探索ジレンマに取り組むKlirの不確実性(英語版)によるサンプリングと、顕在的認識の不確実性(英語版)によるサンプリングという2つの戦略が提案されている。
能動学習実験の結果,提案手法が不確実性サンプリングより優れていることが示された。
関連論文リスト
- Probabilistic Contrastive Learning with Explicit Concentration on the Hypersphere [3.572499139455308]
本稿では,球面空間に表現を埋め込むことにより,不確実性を比較学習に取り入れる新たな視点を提案する。
我々は、濃度パラメータであるカッパを直接解釈可能な尺度として利用し、不確実性を明示的に定量化する。
論文 参考訳(メタデータ) (2024-05-26T07:08:13Z) - Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods? [26.344949402398917]
本稿では,顕在的深層学習の新たな理論的考察について述べる。
これは二階損失関数の最適化の難しさを強調している。
第二次損失最小化における識別可能性と収束性の問題に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2024-02-14T10:07:05Z) - A unified uncertainty-aware exploration: Combining epistemic and
aleatory uncertainty [21.139502047972684]
そこで本稿では, リスク感応探索における浮腫性およびてんかん性不確実性の複合効果を定量的に評価するアルゴリズムを提案する。
本手法は,パラメータ化された回帰分布を推定する分布RLの新たな拡張の上に構築する。
探索課題とリスク課題を伴う課題に対する実験結果から,本手法が代替手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-01-05T17:39:00Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
MDP上の分布によって引き起こされる値の分散を特徴付けることに重点を置いている。
従来の作業は、いわゆる不確実性ベルマン方程式を解くことで、値よりも後方の分散を境界にしている。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式を提案する。
論文 参考訳(メタデータ) (2023-02-24T09:18:27Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Logit-based Uncertainty Measure in Classification [18.224344440110862]
我々は,ロジット不確実性と呼ばれる分類タスクに対して,新しい,信頼性が高く,不可知な不確実性尺度を導入する。
この新たな不確実性対策は,従来の課題に対する不確実性対策よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2021-07-06T19:07:16Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - STUaNet: Understanding uncertainty in spatiotemporal collective human
mobility [11.436035608461966]
本研究では,内部データ品質と外部不確実性を同時に推定する不確実性学習機構を提案する。
提案手法は予測と不確かさの両面において優れていることを示す。
論文 参考訳(メタデータ) (2021-02-09T01:43:27Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
強化学習における探索の効果的なアプローチは、最適な政策に対するエージェントの不確実性に依存することである。
本稿では,評価値のバイアスや時間的に矛盾する点を強調した。
本稿では,時間差誤差の分布の導出に依存する値関数の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-10-05T18:11:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。