論文の概要: License Plate Super-Resolution Using Diffusion Models
- arxiv url: http://arxiv.org/abs/2309.12506v1
- Date: Thu, 21 Sep 2023 22:06:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 16:44:30.713886
- Title: License Plate Super-Resolution Using Diffusion Models
- Title(参考訳): 拡散モデルを用いたライセンスプレート超解像
- Authors: Sawsan AlHalawani, Bilel Benjdira, Adel Ammar, Anis Koubaa, Anas M.
Ali
- Abstract要約: 本研究は,画像復元における他の深層学習技術より一貫して優れる最先端拡散モデルを活用する。
この方法は、SwinIRとESRGANをそれぞれ12.55%、Pak Signal-to-Noise Ratio(PSNR)を37.32%改善する。
- 参考スコア(独自算出の注目度): 1.3499500088995464
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In surveillance, accurately recognizing license plates is hindered by their
often low quality and small dimensions, compromising recognition precision.
Despite advancements in AI-based image super-resolution, methods like
Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs)
still fall short in enhancing license plate images. This study leverages the
cutting-edge diffusion model, which has consistently outperformed other deep
learning techniques in image restoration. By training this model using a
curated dataset of Saudi license plates, both in low and high resolutions, we
discovered the diffusion model's superior efficacy. The method achieves a
12.55\% and 37.32% improvement in Peak Signal-to-Noise Ratio (PSNR) over SwinIR
and ESRGAN, respectively. Moreover, our method surpasses these techniques in
terms of Structural Similarity Index (SSIM), registering a 4.89% and 17.66%
improvement over SwinIR and ESRGAN, respectively. Furthermore, 92% of human
evaluators preferred our images over those from other algorithms. In essence,
this research presents a pioneering solution for license plate
super-resolution, with tangible potential for surveillance systems.
- Abstract(参考訳): 監視において、ライセンスプレートの正確な認識は、しばしば低い品質と小さな寸法によって妨げられ、認識精度を損なう。
AIベースの画像超解像の進歩にもかかわらず、畳み込みニューラルネットワーク(CNN)やGAN(Generative Adversarial Networks)といった手法は、ライセンスプレートイメージの強化に不足している。
本研究は,画像復元における他の深層学習技術より一貫して優れる最先端拡散モデルを活用する。
サウジアラビアのライセンスプレートのキュレートされたデータセットを用いて,低解像度と高解像度の両方でこのモデルを訓練することにより,拡散モデルの優れた有効性を見出した。
この方法は、SwinIRとESRGANに対してピーク信号対雑音比(PSNR)を12.55\%と37.32%改善する。
さらに,本手法は構造類似度指数(ssim)の点でこれらの手法を上回り,swiinirとesrganに対してそれぞれ4.89%,17.66%改善した。
さらに、人間の92%は、他のアルゴリズムのイメージよりも画像を好みました。
本研究は,監視システムにおいて有望な可能性を持つライセンスプレート超解法のための先駆的ソリューションを提案する。
関連論文リスト
- A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
本研究は,超高分解能MRSIのためのフローベースTrncated Denoising Diffusion Modelを導入する。
拡散鎖を切断することで拡散過程を短縮し, 正規化フローベースネットワークを用いて切断工程を推定する。
FTDDMは既存の生成モデルよりも優れており、サンプリングプロセスを9倍以上高速化している。
論文 参考訳(メタデータ) (2024-10-25T03:42:35Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - Improving Generative Adversarial Networks for Video Super-Resolution [0.0]
本研究は,ビデオ超解像課題における生成的敵ネットワークの改善方法について検討する。
我々はPak Signal-to-Noise Ratio (PSNR) と構造類似度指数 (SSIM) を用いて評価を行った。
これらの手法の統合により、PSNRが11.97%改善し、SSIMが8%改善した。
論文 参考訳(メタデータ) (2024-06-24T06:57:51Z) - DifAugGAN: A Practical Diffusion-style Data Augmentation for GAN-based
Single Image Super-resolution [88.13972071356422]
本稿では,DifAugGAN として知られる GAN ベースの画像超解像法(SR) のための拡散型データ拡張手法を提案する。
それは、訓練中の判別器の校正を改善するために、生成拡散モデルに拡散過程を適用することを含む。
我々のDifAugGANは、現在のGANベースのSISR手法のプラグ・アンド・プレイ戦略であり、判別器の校正を改善し、SR性能を向上させることができる。
論文 参考訳(メタデータ) (2023-11-30T12:37:53Z) - Rethinking Degradation: Radiograph Super-Resolution via AID-SRGAN [9.599347633285635]
超解像超解像のための医療用 AttentIon Denoising Super Resolution Generative Adversarial Network (AID-SRGAN) を提案する。
我々の知る限りでは、これがX線画像に初めて提案された複合劣化モデルである。
提案手法はPSNRの311.90ドル,スケール係数は4倍であり,近年の成果よりも7.05%高い。
論文 参考訳(メタデータ) (2022-08-05T06:54:44Z) - GAN-based Super-Resolution and Segmentation of Retinal Layers in Optical
coherence tomography Scans [13.016298207860974]
網膜層のCTスキャンの超高分解能化とセグメンテーションのためのGAN(Generative Adversarial Network)ベースのソリューションを提案する。
GANに基づくセグメンテーションモデルと、人気のあるネットワーク、すなわちU-NetとResNetをGANアーキテクチャに組み込んだ評価を行う。
我々の最良のモデル構成は、Dice係数 0.867 と mIOU 0.765 を実証的に達成した。
論文 参考訳(メタデータ) (2022-06-28T03:53:40Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Boosted EfficientNet: Detection of Lymph Node Metastases in Breast
Cancer Using Convolutional Neural Network [6.444922476853511]
The Convolutional Neutral Network (CNN) は乳癌のリンパ節転移の予測と分類に応用されている。
そこで本研究では,小さな解像度画像を容易にするためのRandom Center Cropping (RCC) という新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T15:18:56Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。