Non-locality of conjugation symmetry: characterization and examples in quantum network sensing
- URL: http://arxiv.org/abs/2309.12523v2
- Date: Thu, 30 May 2024 10:49:45 GMT
- Title: Non-locality of conjugation symmetry: characterization and examples in quantum network sensing
- Authors: Jisho Miyazaki, Seiseki Akibue,
- Abstract summary: We analyze the non-local resources necessary for implementing conjugation-symmetric measurements on quantum networks.
We derive conditions under which a given multipartite conjugation can have locally implementable symmetric measurements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Some quantum information processing protocols necessitate quantum operations that are invariant under complex conjugation. In this study, we analyze the non-local resources necessary for implementing conjugation-symmetric measurements on multipartite quantum networks. We derive conditions under which a given multipartite conjugation can have locally implementable symmetric measurements. In particular, a family of numbers called the ``magic-basis spectrum'' comprehensively characterizes the local measurability of a given 2-qubit conjugation, as well as any other properties that are invariant under local unitary transformations. We also explore the non-local resources required for optimal measurements on known quantum sensor networks by using their conjugation symmetries as a guide.
Related papers
- Local unitarty equivalence and entanglement by Bargmann invariants [5.0818131576227525]
Local unitary equivalence holds significant importance in quantum state classification and resource theory.
This paper focuses on the fundamental issue of local unitary equivalence for multipartite quantum states within quantum information theory.
The research delves into the characterization of local unitary equivalence and the detection of entanglement using local unitary Bargmann invariants.
arXiv Detail & Related papers (2024-12-23T03:15:51Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Quantum Algorithms for Realizing Symmetric, Asymmetric, and Antisymmetric Projectors [3.481985817302898]
Knowing the symmetries of a given system or state obeys or disobeys is often useful in quantum computing.
We present a collection of quantum algorithms that realize projections onto the symmetric subspace.
We show how projectors can be combined in a systematic way to effectively measure various projections in a single quantum circuit.
arXiv Detail & Related papers (2024-07-24T18:00:07Z) - Non-invertible symmetries act locally by quantum operations [0.552480439325792]
Non-invertible symmetries of quantum field theories and many-body systems generalize the concept of symmetries.
Non-invertible symmetries act on local operators by quantum operations.
arXiv Detail & Related papers (2024-03-29T08:54:53Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Complete characterization of quantum correlations by randomized
measurements [0.832184180529969]
We provide a method to measure any locally invariant property of quantum states using locally randomized measurements.
We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation.
Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits.
arXiv Detail & Related papers (2022-12-15T15:22:28Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Gauge equivariant neural networks for quantum lattice gauge theories [2.14192068078728]
Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials.
Motivated by the desire to efficiently simulate many-body quantum systems with exact local gauge invariance, gauge equivariant neural-network quantum states are introduced.
arXiv Detail & Related papers (2020-12-09T18:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.