論文の概要: BayesDLL: Bayesian Deep Learning Library
- arxiv url: http://arxiv.org/abs/2309.12928v1
- Date: Fri, 22 Sep 2023 15:27:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 14:10:59.259359
- Title: BayesDLL: Bayesian Deep Learning Library
- Title(参考訳): BayesDLL: Bayesian Deep Learning Library
- Authors: Minyoung Kim, Timothy Hospedales
- Abstract要約: 大規模ディープネットワークのためのPyTorch用の新しいベイズニューラルネットワークライブラリをリリースする。
我々のライブラリは,変分推論,MCドロップアウト,近似勾配MCMC,ラプラス近似といった主流推論アルゴリズムを実装している。
- 参考スコア(独自算出の注目度): 29.624531252627484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We release a new Bayesian neural network library for PyTorch for large-scale
deep networks. Our library implements mainstream approximate Bayesian inference
algorithms: variational inference, MC-dropout, stochastic-gradient MCMC, and
Laplace approximation. The main differences from other existing Bayesian neural
network libraries are as follows: 1) Our library can deal with very large-scale
deep networks including Vision Transformers (ViTs). 2) We need virtually zero
code modifications for users (e.g., the backbone network definition codes do
not neet to be modified at all). 3) Our library also allows the pre-trained
model weights to serve as a prior mean, which is very useful for performing
Bayesian inference with the large-scale foundation models like ViTs that are
hard to optimise from scratch with the downstream data alone. Our code is
publicly available at: \url{https://github.com/SamsungLabs/BayesDLL}\footnote{A
mirror repository is also available at:
\url{https://github.com/minyoungkim21/BayesDLL}.}.
- Abstract(参考訳): 大規模ディープネットワークのためのPyTorch用の新しいベイズニューラルネットワークライブラリをリリースする。
本ライブラリでは,変分推論,MCドロップアウト,確率勾配MCMC,ラプラス近似といったベイズ近似アルゴリズムを実装している。
他の既存のベイズ型ニューラルネットワークライブラリとの主な違いは次のとおりである。
1)本ライブラリは視覚変換器(ViT)を含む大規模ディープネットワークを扱うことができる。
2) ユーザには事実上ゼロのコード修正が必要です(例えば、バックボーンネットワーク定義コードは変更する必要はまったくありません)。
3)本ライブラリは,事前学習したモデル重みを事前平均として機能させることも可能であり,vitsのような大規模基礎モデルでベイズ推論を行う上で非常に有用であり,下流データだけではスクラッチから最適化することが困難である。
当社のコードは以下に公開されています。 \url{https://github.com/SamsungLabs/BayesDLL}\footnote{A mirror repository
}.
関連論文リスト
- $\texttt{skwdro}$: a library for Wasserstein distributionally robust machine learning [6.940992962425166]
skwdroは、堅牢な機械学習モデルをトレーニングするためのPythonライブラリである。
一般的な目的のために、Scikit-learn互換の推定器と、PyTorchモジュール用のラッパーの両方を備えている。
論文 参考訳(メタデータ) (2024-10-28T17:16:00Z) - Bayesian Inference with Deep Weakly Nonlinear Networks [57.95116787699412]
我々は,完全連結ニューラルネットワークによるベイズ推定が解けることを示す物理レベルの厳密さを示す。
我々はモデルエビデンスを計算し、任意の温度で1/N$で任意の順序に後続する手法を提供する。
論文 参考訳(メタデータ) (2024-05-26T17:08:04Z) - UncertaintyPlayground: A Fast and Simplified Python Library for
Uncertainty Estimation [0.0]
UncertaintyPlaygroundはPyTorchとGPyTorch上に構築されたPythonライブラリで、教師付き学習タスクの不確かさを推定する。
このライブラリは、ガウスおよびマルチモーダルな結果分布の高速なトレーニングを提供する。
1つ以上のインスタンスの予測間隔を視覚化することができる。
論文 参考訳(メタデータ) (2023-10-23T18:36:54Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfnはPyTorchライブラリで、このニーズに対処することを目指している。
環境のためのシンプルなAPIと、サンプルと損失のための有用な抽象化を提供する。
論文 参考訳(メタデータ) (2023-05-24T00:20:59Z) - Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$ [118.04625413322827]
$texttt5x$と$texttseqio$は、言語モデルの構築とトレーニングのためのオープンソースのソフトウェアライブラリである。
これらのライブラリは、複数のテラバイトのトレーニングデータを持つデータセット上で、数十億のパラメータを持つモデルをトレーニングするために使用されています。
論文 参考訳(メタデータ) (2022-03-31T17:12:13Z) - TyXe: Pyro-based Bayesian neural nets for Pytorch [12.343312954353639]
我々はPytorchとPyro上に構築されたベイズニューラルネットワークライブラリTyXeを紹介する。
私たちの主要な設計原則は、アーキテクチャ、事前、推論、そして可能性仕様をきれいに分離することです。
既存のパッケージとは対照的に、TyXeはいかなるレイヤクラスも実装せず、代わりに一般的なPytorchコードで定義されたアーキテクチャに依存している。
論文 参考訳(メタデータ) (2021-10-01T09:04:26Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learnは視覚表現学習のための自己指導型のメソッドのライブラリである。
Pythonで実装され、PytorchとPytorch Lightningを使用して、このライブラリは研究と業界のニーズの両方に適合する。
論文 参考訳(メタデータ) (2021-08-03T22:19:55Z) - DeepLab2: A TensorFlow Library for Deep Labeling [118.95446843615049]
DeepLab2は、コンピュータビジョンにおける一般的な高密度ピクセル予測問題に対するディープラベリングのためのライブラリである。
DeepLab2には、トレーニング済みのチェックポイントとモデルトレーニングと評価コードを備えた、最近開発したDeepLabモデルのバリエーションがすべて含まれています。
DeepLab2の有効性を示すために、Axial-SWideRNetをネットワークバックボーンとして使用したPanoptic-DeepLabは、Cityscaspes検証セット上で68.0% PQまたは83.5% mIoUを達成した。
論文 参考訳(メタデータ) (2021-06-17T18:04:53Z) - Bayesian Inference Forgetting [82.6681466124663]
忘れられる権利は多くの国で合法化されているが、機械学習の施行は耐え難いコストを引き起こすだろう。
本稿では,ベイズ推論において忘れられる権利を実現するための it bayesian inference forgetting (bif) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-16T09:52:51Z) - Bayesian Deep Learning via Subnetwork Inference [2.2835610890984164]
モデル重みの小さな部分集合に対して推論を行い、正確な予測後部を得るのに十分であることを示す。
このサブネットワーク推論フレームワークは、そのような部分集合に対して表現的で、そうでなければ、引き起こせない後続近似を使用できる。
論文 参考訳(メタデータ) (2020-10-28T01:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。