Free fermions with dephasing and boundary driving: Bethe Ansatz results
- URL: http://arxiv.org/abs/2309.12978v2
- Date: Sun, 09 Feb 2025 09:41:31 GMT
- Title: Free fermions with dephasing and boundary driving: Bethe Ansatz results
- Authors: Vincenzo Alba,
- Abstract summary: We use the Bethe ansatz to diagonalize the Liouvillian $mathcal Lscriptscriptstyle(2)$ governing the dynamics of the correlator.
Precisely, $L(L-1)/2$ complex energies do not depend on dephasing, apart for a trivial shift.
The long-time dynamics is governed by a band of real energies, which contains an extensive number of levels.
- Score: 0.0
- License:
- Abstract: By employing the Lindblad equation, we derive the evolution of the two-point correlator for a free-fermion chain of length $L$ subject to bulk dephasing and boundary losses. We use the Bethe ansatz to diagonalize the Liouvillian ${\mathcal L}^{\scriptscriptstyle(2)}$ governing the dynamics of the correlator. The majority of its energy levels are complex. Precisely, $L(L-1)/2$ complex energies do not depend on dephasing, apart for a trivial shift. The remaining complex levels are perturbatively related to the dephasing-independent ones for large $L$. The long-time dynamics is governed by a band of real energies, which contains an extensive number of levels. They give rise to diffusive scaling at intermediate times, when boundaries can be neglected. Moreover, they encode the breaking of diffusion at asymptotically long times. Interestingly, for large loss rate two boundary modes appear in the spectrum. The real energies correspond to string solutions of the Bethe equations, and can be treated effectively for large chains. This allows us to derive compact formulas for the dynamics of the fermionic density. We check our results against exact diagonalization, finding perfect agreement.
Related papers
- Transfer matrix approach to quantum systems subject to certain Lindblad evolution [0.0]
We find a simple expression of the Green's function in the Laplace domain.
It can be used to get analytical results in the thermodynamic limit.
It also provides a fast numerical method to determine the evolution of the density.
arXiv Detail & Related papers (2025-01-23T11:06:00Z) - Kibble-Zurek Behavior in the Boundary-obstructed Phase Transitions [1.9171404264679484]
We study the nonadiabatic dynamics of a two-dimensional topological insulator when the system is slowly quenched across the boundary-obstructed phase transition.
We find that the number of excitations produced after the quench exhibits power-law scaling behaviors with the quench rate.
arXiv Detail & Related papers (2024-07-11T07:39:41Z) - Unifying Floquet theory of longitudinal and dispersive readout [33.7054351451505]
We devise a Floquet theory of longitudinal and dispersive readout in circuit QED.
We apply them to superconducting and spin-hybrid cQED systems.
arXiv Detail & Related papers (2024-07-03T18:00:47Z) - Hamiltonian Mechanics of Feature Learning: Bottleneck Structure in Leaky ResNets [58.460298576330835]
We study Leaky ResNets, which interpolate between ResNets ($tildeLtoinfty$) and Fully-Connected nets ($tildeLtoinfty$)
In the infinite depth limit, we study'representation geodesics' $A_p$: continuous paths in representation space (similar to NeuralODEs)
We leverage this intuition to explain the emergence of a bottleneck structure, as observed in previous work.
arXiv Detail & Related papers (2024-05-27T18:15:05Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Exact solution for the filling-induced thermalization transition in a 1D
fracton system [0.0]
We study a random circuit model of constrained fracton dynamics in which particles undergo random local motion.
We identify an exact solution for the critical density $n_c$.
We show that there is a universal value of the correlation length exponent $nu = 2$ near the transition.
arXiv Detail & Related papers (2022-10-05T18:00:02Z) - Exact solution of a family of staggered Heisenberg chains with
conclusive pretty good quantum state transfer [68.8204255655161]
We work out the exact solutions in the one-excitation subspace.
We present numerical evidence that pretty good transmission is achieved by chains whose length is not a power of two.
arXiv Detail & Related papers (2022-06-28T18:31:09Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Real-time dynamics in 2+1d compact QED using complex periodic Gaussian
states [0.688204255655161]
We introduce a class of variational states to study ground state properties and real-time dynamics in (2+1)-dimensional compact QED.
We calculate the ground state energy density for lattice sizes up to $20 times 20$ and extrapolate to the thermodynamic limit for the whole coupling region.
arXiv Detail & Related papers (2020-06-17T17:58:08Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.