論文の概要: Book Chapter in Computational Demography and Health
- arxiv url: http://arxiv.org/abs/2309.13056v1
- Date: Fri, 8 Sep 2023 17:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-01 12:24:16.328552
- Title: Book Chapter in Computational Demography and Health
- Title(参考訳): 第1章 コンピュータ・デモグラフィーと健康
- Authors: Zack W. Almquist, Courtney Allen, Ihsan Kahveci
- Abstract要約: 計算デモグラフィー、ビッグデータ、精密健康研究には社会科学者、物理科学者、技術者、データ科学者、疾病の専門家が含まれる。
この作業は、管理データの使用方法を変え、調査を実施し、ビッグデータを通じた複雑な行動研究を可能にしました。
この章では、この新興分野の新しいデータソース、メソッド、アプリケーションについてレビューする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in computing, data entry and generation, and analytic
tools have changed the landscape of modern demography and health research.
These changes have come to be known as computational demography, big data, and
precision health in the field. This emerging interdisciplinary research
comprises social scientists, physical scientists, engineers, data scientists,
and disease experts. This work has changed how we use administrative data,
conduct surveys, and allow for complex behavioral studies via big data
(electronic trace data from mobile phones, apps, etc.). This chapter reviews
this emerging field's new data sources, methods, and applications.
- Abstract(参考訳): コンピュータ、データ入力、生成、分析ツールの最近の発展は、現代のデモグラフィーと健康研究の風景を変えてきた。
これらの変化は、この分野における計算デモグラフィ、ビッグデータ、精密健康と呼ばれるようになった。
この新たな学際研究は、社会科学者、物理科学者、エンジニア、データ科学者、疾病専門家を含む。
この作業は、管理データの使用方法を変え、調査を行い、ビッグデータ(携帯電話、アプリなどからの電子的トレースデータ)を介して複雑な行動研究を可能にする。
この章では、新興分野の新しいデータソース、メソッド、アプリケーションについてレビューする。
関連論文リスト
- DAMMI:Daily Activities in a Psychologically Annotated Multi-Modal IoT dataset [10.771838327042609]
DAMMIデータセットは、この分野の研究者を支援するように設計されている。
これには、ホームインストールされたセンサー、スマートフォンデータ、リストバンド146日以上にわたって収集された高齢者の日々の行動データが含まれている。
データ収集は、新型コロナウイルス(COVID-19)のパンデミック、正月、ラマダンの宗教月など、重要なイベントにまたがる。
論文 参考訳(メタデータ) (2024-10-05T13:26:54Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Educational data mining and learning analytics: An updated survey [0.0]
この調査は、このジャーナルで公開された前の調査の更新版と改善版である。
教育データマイニングと学習分析が教育データに対してどのように適用されてきたのかを、理解しやすく、非常に一般的な方法でレビューする。
論文 参考訳(メタデータ) (2024-02-10T18:48:45Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
ゲノム学の機械学習応用に関する文献を、治療開発のレンズでレビューします。
治療パイプライン全体にわたるゲノミクス応用における22の機械学習を同定する。
この分野における7つの重要な課題を、拡大と影響の機会として挙げる。
論文 参考訳(メタデータ) (2021-05-03T21:20:20Z) - A field guide to cultivating computational biology [1.040598660564506]
バイオメディカルリサーチセンターは、実験や患者からの大規模なデータセットを活用することで、基礎的な発見と治療戦略を強化することができる。
このデータと、それを作成し、分析する新しい技術は、従来の個別の単一分野の研究モデルを超えて、データ駆動の発見の時代を後押ししてきた。
我々は、個々の科学者、機関、雑誌発行者、資金調達機関、教育者に対する解決策を提案する。
論文 参考訳(メタデータ) (2021-04-23T01:24:21Z) - A Literature Review of Recent Graph Embedding Techniques for Biomedical
Data [36.446560017794845]
このようなデータを分析するために,グラフに基づく学習法が数多く提案されている。
主な困難は、バイオメディカルグラフの高次元性と空間性を扱う方法である。
グラフ埋め込みメソッドは、上記の問題に対処するための効率的かつ効率的な方法を提供する。
論文 参考訳(メタデータ) (2021-01-17T01:53:50Z) - Surgical Data Science -- from Concepts toward Clinical Translation [67.543698133416]
外科的データサイエンスは、データの取得、組織化、分析、モデリングを通じて介入医療の質を向上させることを目的としている。
私たちは、その根底にある理由を明かし、この分野における今後の進歩のロードマップを提供しました。
論文 参考訳(メタデータ) (2020-10-30T14:20:16Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
モバイルデータ分析における多くの関心は、人間とその行動に関連している。
本研究の目的は,携帯電話データから知識を発見するために実装された手法や手法をレビューすることである。
論文 参考訳(メタデータ) (2020-08-29T15:14:03Z) - Leveraging Big Data Analytics in Healthcare Enhancement: Trends,
Challenges and Opportunities [8.769092306409933]
我々は、医療の5つのサブ分野において、ビッグデータと分析技術の新興の展望を示す。
この論文は、医療におけるビッグデータ分析の採用における、注目すべき応用と課題から締めくくっている。
論文 参考訳(メタデータ) (2020-04-05T06:46:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。