Improving Qubit Routing by Using Entanglement Mediated Remote Gates
- URL: http://arxiv.org/abs/2309.13141v2
- Date: Mon, 16 Sep 2024 02:19:32 GMT
- Title: Improving Qubit Routing by Using Entanglement Mediated Remote Gates
- Authors: Gurleen Padda, Edwin Tham, Aharon Brodutch, Dave Touchette,
- Abstract summary: Near-term quantum computers often have connectivity constraints, on which pairs of qubits in the device can interact.
We develop a method to optimize the routing of circuits with both standard gates and EPR mediated remote controlled-NOT gates.
We demonstrate that EPR-mediated operations can substantially reduce the total number of gates and depths of compiled circuits.
- Score: 1.9299285312415735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Near-term quantum computers often have connectivity constraints, i.e. restrictions, on which pairs of qubits in the device can interact. Optimally mapping a quantum circuit to a hardware topology under these constraints is a difficult task. While numerous approaches have been proposed to optimize qubit routing, the resulting gate count and depth overheads of the compiled circuits remain high due to the short-range coupling of qubits in many near-term devices. Resource states, such as Bell or Einstein-Podolsky-Rosen (EPR) pairs, can be used to mediate operations that facilitate long-range interactions between qubits. In this work, we studied some of the practical trade-offs involved in using resource states for qubit routing. We developed a method that leverages an existing state-of-the-art compiler to optimize the routing of circuits with both standard gates and EPR mediated remote controlled-NOT gates. This was then used to compile different benchmark circuits for a square grid topology, where a fraction of the qubits are used to store EPR pairs. We demonstrate that EPR-mediated operations can substantially reduce the total number of gates and depths of compiled circuits when used with an appropriate optimizing compiler that accounts for practical overheads. Our results highlight the relevance of developing efficient compilation tools that can integrate EPR-mediated operations.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - A Genetic Approach to Minimising Gate and Qubit Teleportations for Multi-Processor Quantum Circuit Distribution [6.207327488572861]
Distributed Quantum Computing (DQC) provides a means for scaling available quantum computation by interconnecting multiple quantum processor units (QPUs)
A key challenge in this domain is efficiently allocating logical qubits from quantum circuits to the physical qubits within QPUs, a task known to be NP-hard.
Traditional approaches have sought to reduce the number of required Bell pairs for executing non-local CNOT operations, a form of gate teleportation.
We introduce a novel meta-heuristic algorithm to minimise the network cost of executing a quantum circuit.
arXiv Detail & Related papers (2024-05-09T16:03:41Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
Dynamically field-programmable qubit arrays (DPQA) have emerged as a promising platform for quantum information processing.
In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements.
We show that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture.
arXiv Detail & Related papers (2023-06-06T08:13:10Z) - Efficient Quantum Circuit Design with a Standard Cell Approach, with an Application to Neutral Atom Quantum Computers [45.66259474547513]
We design quantum circuits by using the standard cell approach borrowed from classical circuit design.
We present evidence that, when compared with automatic routing methods, our layout-aware routers are significantly faster and achieve shallower 3D circuits.
arXiv Detail & Related papers (2022-06-10T10:54:46Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Surface code compilation via edge-disjoint paths [0.0]
We show how to prepare many long-range pairs on qubits connected by edge-disjoint paths of ancillas in constant depth.
This forms one core part of our Edge-Disjoint Paths Compilation algorithm.
We find significantly improved performance for circuits built from parallel cnots, and for circuits which implement the multi-controlled $X$ gate.
arXiv Detail & Related papers (2021-10-21T21:40:43Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z) - Using Reinforcement Learning to Perform Qubit Routing in Quantum
Compilers [0.0]
We propose a qubit routing procedure that uses a modified version of the deep Q-learning paradigm.
The system is able to outperform the qubit routing procedures from two of the most advanced quantum compilers currently available.
arXiv Detail & Related papers (2020-07-31T10:57:24Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.