論文の概要: Poster: Self-Supervised Quantization-Aware Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2309.13220v1
- Date: Fri, 22 Sep 2023 23:52:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 21:23:01.338972
- Title: Poster: Self-Supervised Quantization-Aware Knowledge Distillation
- Title(参考訳): ポスト:自己監督型量子化-知識蒸留
- Authors: Kaiqi Zhao, Ming Zhao
- Abstract要約: 量子化対応トレーニング(QAT)は、事前トレーニングされた完全精度モデルから始まり、再トレーニング中に量子化を実行する。
既存のQATの作業にはラベルの監督が必要であり、精度の低下による精度の低下に悩まされている。
本稿では,SQAKD(Self-Supervised Quantization-Aware Knowledge Distillation framework)を提案する。
- 参考スコア(独自算出の注目度): 6.463799944811755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization-aware training (QAT) starts with a pre-trained full-precision
model and performs quantization during retraining. However, existing QAT works
require supervision from the labels and they suffer from accuracy loss due to
reduced precision. To address these limitations, this paper proposes a novel
Self-Supervised Quantization-Aware Knowledge Distillation framework (SQAKD).
SQAKD first unifies the forward and backward dynamics of various quantization
functions and then reframes QAT as a co-optimization problem that
simultaneously minimizes the KL-Loss and the discretization error, in a
self-supervised manner. The evaluation shows that SQAKD significantly improves
the performance of various state-of-the-art QAT works. SQAKD establishes
stronger baselines and does not require extensive labeled training data,
potentially making state-of-the-art QAT research more accessible.
- Abstract(参考訳): 量子化対応トレーニング(QAT)は、事前トレーニングされた完全精度モデルから始まり、再トレーニング中に量子化を実行する。
しかし、既存のQATはレーベルの監督を必要としており、精度の低下による精度の低下に悩まされている。
これらの制約に対処するため,本稿では,SQAKD(Self-Supervised Quantization-Aware Knowledge Distillation framework)を提案する。
SQAKDはまず、様々な量子化関数の前方と後方のダイナミクスを統一し、次に、KL-Lossと離散化誤差を同時に最小化する共最適化問題としてQATを再配置する。
評価の結果,SQAKDは様々な最先端QAT作品の性能を著しく向上させることがわかった。
SQAKDはより強力なベースラインを確立し、ラベル付きトレーニングデータを必要としない。
関連論文リスト
- QSpec: Speculative Decoding with Complementary Quantization Schemes [37.007621357142725]
量子化は、推論を加速し、大きな言語モデルのメモリ消費を減らすために、実質的に採用されている。
本稿では、投機的復号化のための2つの相補的量子化スキームをシームレスに統合するQSPECと呼ばれる新しい量子化パラダイムを提案する。
QSPECは、品質上の妥協なしにトークン生成スループットを最大1.80倍向上させる。
論文 参考訳(メタデータ) (2024-10-15T05:57:51Z) - Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization [55.09893295671917]
本稿では,Gdient-Regulated Meta-Prompt IQA Framework (GRMP-IQA)を紹介する。
GRMP-IQAはMeta-Prompt事前学習モジュールとQuality-Aware Gradient Regularizationの2つの主要なモジュールから構成されている。
5つの標準BIQAデータセットの実験は、限られたデータ設定下での最先端BIQA手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-09T07:26:21Z) - Self-Supervised Quantization-Aware Knowledge Distillation [5.4714555711042]
本稿では,SQAKD(Self-Supervised Quantization-Aware Knowledge Distillation)フレームワークを提案する。
SQAKDは、様々な量子化関数の前方と後方のダイナミクスを統一し、様々なQAT処理を組み込むのに柔軟である。
包括的な評価では、SQAKDは最先端のQATやKDよりも大幅に優れており、様々なモデルアーキテクチャで機能している。
論文 参考訳(メタデータ) (2024-03-17T06:20:28Z) - Self-Supervised Speech Quality Estimation and Enhancement Using Only
Clean Speech [50.95292368372455]
ベクトル量子化変分オートエンコーダ(VQ-VAE)の量子化誤差に基づく音声評価のための自己教師付きメトリックであるVQScoreを提案する。
VQ-VAEのトレーニングはクリーン音声に依存するため、音声が歪んだときに大きな量子化誤差が期待できる。
また,ベクトル量子化機構は,自己教師付き音声強調(SE)モデルトレーニングにも有効であることがわかった。
論文 参考訳(メタデータ) (2024-02-26T06:01:38Z) - Push Quantization-Aware Training Toward Full Precision Performances via
Consistency Regularization [23.085230108628707]
量子アウェアトレーニング(QAT)の手法は、完全な精度(FP)向上に向けた性能を保証するために、ラベル付きデータセットや知識の蒸留に大きく依存する。
本稿では,QATのための一貫性規則化(CR)を導入する,シンプルで斬新だが強力な手法を提案する。
本手法は,異なるネットワークアーキテクチャと様々なQAT手法によく適応する。
論文 参考訳(メタデータ) (2024-02-21T03:19:48Z) - Challenges for Reinforcement Learning in Quantum Circuit Design [8.894627352356302]
ハイブリッド量子機械学習(QML)は、機械学習(ML)を改善するためのQCの応用と、QCアーキテクチャを改善するためのMLの両方を含む。
我々はマルコフ決定過程として定式化された具体的なフレームワークであるqcd-gymを提案し、連続パラメータ化された量子ゲートの普遍的なセットを制御することができる学習ポリシーを実現する。
論文 参考訳(メタデータ) (2023-12-18T16:41:30Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
まず、オフラインRLにおけるQ値推定のばらつきの主な原因として、基本パターン、自己励起を同定する。
そこで本研究では,Q-network の学習における進化特性を測定するために,SEEM(Self-Excite Eigen Value Measure)尺度を提案する。
われわれの理論では、訓練が早期に発散するかどうかを確実に決定できる。
論文 参考訳(メタデータ) (2023-10-06T17:57:44Z) - SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed
Stochastic Quantization [13.075574481614478]
ベクトル量子化変分オートエンコーダ(VQ-VAE)の注目すべき問題は、学習された離散表現がコードブックの全容量のごく一部しか使用していないことである。
本稿では,新しい量子化法と量子化法により,標準VAEを拡張した新しいトレーニング手法を提案する。
実験の結果,SQ-VAEはコモンズを使わずにコードブックの利用を改善することがわかった。
論文 参考訳(メタデータ) (2022-05-16T09:49:37Z) - ProQA: Structural Prompt-based Pre-training for Unified Question
Answering [84.59636806421204]
ProQAは統一されたQAパラダイムであり、単一のモデルによって様々なタスクを解決する。
全てのQAタスクの知識一般化を同時にモデル化し、特定のQAタスクの知識カスタマイズを維持します。
ProQAは、フルデータの微調整、数ショットの学習、ゼロショットテストシナリオの両方のパフォーマンスを一貫して向上させる。
論文 参考訳(メタデータ) (2022-05-09T04:59:26Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
視覚的画像品質評価(BIQA)のための簡易かつ効果的な連続学習法を提案する。
このアプローチの重要なステップは、トレーニング済みのディープニューラルネットワーク(DNN)のすべての畳み込みフィルタを凍結して、安定性を明示的に保証することです。
我々は、各新しいIQAデータセット(タスク)に予測ヘッドを割り当て、対応する正規化パラメータをロードして品質スコアを生成する。
最終的な品質推定は、軽量な$K$-meansゲーティング機構で、すべての頭からの予測の重み付け総和によって計算される。
論文 参考訳(メタデータ) (2021-07-28T15:21:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。