論文の概要: Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks
- arxiv url: http://arxiv.org/abs/2309.13223v3
- Date: Thu, 1 Feb 2024 01:01:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 19:15:03.495692
- Title: Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks
- Title(参考訳): 因果推論:次世代AI-Native Wireless Networkの革命的コースをグラフ化する
- Authors: Christo Kurisummoottil Thomas, Christina Chaccour, Walid Saad,
Merouane Debbah and Choong Seon Hong
- Abstract要約: 次世代無線ネットワーク(例:6G)は人工知能(AI)ネイティブである。
本稿では、新たな因果推論分野を基盤として、AIネイティブな無線ネットワークを構築するための新しいフレームワークを紹介する。
因果発見と表現によって対処できる無線ネットワークの課題をいくつか挙げる。
- 参考スコア(独自算出の注目度): 63.246437631458356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the basic premise that next-generation wireless networks (e.g., 6G)
will be artificial intelligence (AI)-native, to date, most existing efforts
remain either qualitative or incremental extensions to existing "AI for
wireless" paradigms. Indeed, creating AI-native wireless networks faces
significant technical challenges due to the limitations of data-driven,
training-intensive AI. These limitations include the black-box nature of the AI
models, their curve-fitting nature, which can limit their ability to reason and
adapt, their reliance on large amounts of training data, and the energy
inefficiency of large neural networks. In response to these limitations, this
article presents a comprehensive, forward-looking vision that addresses these
shortcomings by introducing a novel framework for building AI-native wireless
networks; grounded in the emerging field of causal reasoning. Causal reasoning,
founded on causal discovery, causal representation learning, and causal
inference, can help build explainable, reasoning-aware, and sustainable
wireless networks. Towards fulfilling this vision, we first highlight several
wireless networking challenges that can be addressed by causal discovery and
representation, including ultra-reliable beamforming for terahertz (THz)
systems, near-accurate physical twin modeling for digital twins, training data
augmentation, and semantic communication. We showcase how incorporating causal
discovery can assist in achieving dynamic adaptability, resilience, and
cognition in addressing these challenges. Furthermore, we outline potential
frameworks that leverage causal inference to achieve the overarching objectives
of future-generation networks, including intent management, dynamic
adaptability, human-level cognition, reasoning, and the critical element of
time sensitivity.
- Abstract(参考訳): 次世代無線ネットワーク(例えば6G)が人工知能(AI)ネイティブであるという基本的な前提にもかかわらず、既存の「無線用AI」パラダイムへの定性的または漸進的な拡張は依然として残っている。
実際、AIネイティブな無線ネットワークを作ることは、データ駆動のトレーニング集約型AIの限界のために、重要な技術的課題に直面している。
これらの制限には、aiモデルのブラックボックスの性質、推論と適応の能力を制限する曲線適合性、大量のトレーニングデータへの依存、大規模ニューラルネットワークのエネルギー効率の非効率などが含まれる。
これらの制限に対応するために、この記事では、AIネイティブな無線ネットワークを構築するための新しいフレームワークを導入することで、これらの欠点に対処する包括的で先進的なビジョンを提示します。
因果的発見、因果的表現学習、因果的推論に基づく因果的推論は、説明可能で合理的で持続可能なワイヤレスネットワークを構築するのに役立つ。
このビジョンの実現に向けて、我々はまず、テラヘルツ(THz)システムのための超信頼性ビームフォーミング、ディジタル双生児のためのほぼ正確な物理双対モデリング、トレーニングデータ拡張、セマンティックコミュニケーションなど、因果発見と表現によって対処できるいくつかの無線ネットワーク課題を強調した。
これらの課題に対処する上で,因果的発見が動的適応性,レジリエンス,認知を達成する上でどのように役立つかを紹介する。
さらに,意図管理や動的適応性,人間レベルの認識,推論,時間感受性の重要な要素など,次世代ネットワークの包括的な目標を達成するために因果推論を利用する潜在的なフレームワークについて概説する。
関連論文リスト
- AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - AI-based traffic analysis in digital twin networks [3.4742424312781752]
Digital Twin Networks(DTNs)は、物理ネットワークの理解と最適化方法に革命をもたらしている。
彼らは計算能力とAI能力を活用して仮想表現を提供し、現実世界のネットワーク課題に対して高度に洗練されたレコメンデーションをもたらす。
この章では、DTN内のAI駆動トラフィック分析の世界について論じている。
論文 参考訳(メタデータ) (2024-11-01T15:41:23Z) - CaTs and DAGs: Integrating Directed Acyclic Graphs with Transformers and Fully-Connected Neural Networks for Causally Constrained Predictions [6.745494093127968]
CFCN(Causal Fully-Connected Neural Networks)とCaT(Causal Transformers)を紹介する。
CFCNsとCaTsは、DAG(Directed Acyclic Graph)によって規定された、予め定義された因果制約の下で動作する
これらのモデルは、基盤となる構造的制約に固執しながら、従来のニューラルネットワークの強力な関数近似能力を保持します。
論文 参考訳(メタデータ) (2024-10-18T14:10:16Z) - A Synergistic Approach In Network Intrusion Detection By Neurosymbolic AI [6.315966022962632]
本稿では,ニューロシンボリック人工知能(NSAI)をネットワーク侵入検知システム(NIDS)に組み込む可能性について検討する。
NSAIは、ディープラーニングのデータ駆動の強みと、象徴的なAIの論理的推論を組み合わせて、サイバーセキュリティにおける動的な課題に取り組む。
NIDSにNSAIを組み込むことは、複雑なネットワーク脅威の検出と解釈の両方において、潜在的な進歩を示す。
論文 参考訳(メタデータ) (2024-06-03T02:24:01Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
AIの変換力は、ディープニューラルネットワーク(DNN)の利用から導かれる。
ディープラーニング(DL)は、エンドユーザーデバイス(EUD)に近い無線エッジネットワークに移行しつつある。
その可能性にもかかわらず、エッジAIは大きな課題に直面している。主な原因は、無線エッジネットワークのリソース制限と、DLのリソース集約的な性質の分離である。
論文 参考訳(メタデータ) (2023-12-01T04:04:37Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - The Interplay of AI and Digital Twin: Bridging the Gap between
Data-Driven and Model-Driven Approaches [2.842794675894731]
Digital Twin(DT)の概念は、物理エンティティとネットワークダイナミクスのための仮想ツインを作成することを目的としている。
AIがDTのシードであるという一般的な理解にもかかわらず、DTとAIが互いに有効になることを期待しています。
論文 参考訳(メタデータ) (2022-09-26T05:12:58Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。