論文の概要: Portrait Stylization: Artistic Style Transfer with Auxiliary Networks
for Human Face Stylization
- arxiv url: http://arxiv.org/abs/2309.13492v1
- Date: Sat, 23 Sep 2023 23:02:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 19:22:59.460842
- Title: Portrait Stylization: Artistic Style Transfer with Auxiliary Networks
for Human Face Stylization
- Title(参考訳): ポートレートスタイリゼーション:人間の顔スタイリゼーションのための補助ネットワークを用いたアートスタイルトランスファー
- Authors: Thiago Ambiel
- Abstract要約: 本稿では,コンテンツ画像から最終スタイル化結果への人間の顔特徴の伝播を促すために,補助訓練済みの顔認識モデルからの埋め込みの利用を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today's image style transfer methods have difficulty retaining humans face
individual features after the whole stylizing process. This occurs because the
features like face geometry and people's expressions are not captured by the
general-purpose image classifiers like the VGG-19 pre-trained models. This
paper proposes the use of embeddings from an auxiliary pre-trained face
recognition model to encourage the algorithm to propagate human face features
from the content image to the final stylized result.
- Abstract(参考訳): 今日のイメージスタイルの転送手法は、全体のスタイリングプロセスの後、人間の個々の特徴に直面するのが困難である。
これは、顔の幾何学や人の表情のような特徴が、vgg-19事前訓練されたモデルのような汎用画像分類器によって捉えられないためである。
本稿では,コンテンツ画像から最終スタイル化結果への人間の顔特徴の伝播を促すために,補助訓練済みの顔認識モデルからの埋め込みの利用を提案する。
関連論文リスト
- High-Fidelity Face Swapping with Style Blending [16.024260677867076]
高忠実な顔交換のための革新的なエンドツーエンドフレームワークを提案する。
まず、スタイルGANベースの顔属性エンコーダを導入し、顔から重要な特徴を抽出し、潜在スタイルコードに変換する。
第二に、ターゲットからターゲットへFace IDを効果的に転送するアテンションベースのスタイルブレンディングモジュールを導入する。
論文 参考訳(メタデータ) (2023-12-17T23:22:37Z) - Portrait Diffusion: Training-free Face Stylization with
Chain-of-Painting [64.43760427752532]
顔のスタイリゼーション(face stylization)とは、顔の特定の肖像画スタイルへの変換を指す。
現在の手法では、ファインチューン事前訓練された生成モデルに対するサンプルベースの適応アプローチが必要とされる。
本稿では,ポートレートディフュージョン(Portrait Diffusion)という,トレーニング不要な顔スタイル化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T06:48:35Z) - 3D Face Arbitrary Style Transfer [18.09280257466941]
FDST(Face-Guided Dual Style Transfer)という新しい手法を提案する。
FDSTは3Dデカップリングモジュールを使用して顔の形状とテクスチャを分離する。
FDSTは、領域制御可能なスタイル転送、高忠実な顔テクスチャ再構築、芸術的な顔再構成など、多くの下流タスクに適用可能であることを示す。
論文 参考訳(メタデータ) (2023-03-14T08:51:51Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - Quality Metric Guided Portrait Line Drawing Generation from Unpaired
Training Data [88.78171717494688]
本研究では,顔画像から肖像画への自動変換手法を提案する。
本手法は,(1)1つのネットワークを用いて複数のスタイルで高品質な肖像画を生成することを学習し,(2)トレーニングデータに見つからない「新しいスタイル」の肖像画を生成する。
論文 参考訳(メタデータ) (2022-02-08T06:49:57Z) - BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation [9.370501805054344]
任意の顔生成のためのBlendGANを提案する。
まず、任意のスタイルの表現を抽出するために、ジェネリックアートデータセット上で自己教師型スタイルエンコーダを訓練する。
さらに、顔とスタイルの表現を暗黙的にブレンドし、任意のスタイル化効果を制御するために、重み付け混合モジュール(WBM)を提案する。
論文 参考訳(メタデータ) (2021-10-22T12:00:27Z) - FacialGAN: Style Transfer and Attribute Manipulation on Synthetic Faces [9.664892091493586]
FacialGANは、リッチなスタイル転送と対話的な顔属性操作を可能にする新しいフレームワークである。
モデルが視覚的に説得力のある結果を生み出す能力は,スタイル伝達,属性操作,多様性,顔認証などである。
論文 参考訳(メタデータ) (2021-10-18T15:53:38Z) - DeepFacePencil: Creating Face Images from Freehand Sketches [77.00929179469559]
既存の画像から画像への変換には、大規模なスケッチと画像のデータセットが必要である。
本稿では,手描きスケッチから写真リアルな顔画像を生成するための効果的なツールであるDeepFacePencilを提案する。
論文 参考訳(メタデータ) (2020-08-31T03:35:21Z) - Generating Person Images with Appearance-aware Pose Stylizer [66.44220388377596]
本稿では,人物のポーズや外見に基づいてリアルな人物画像を生成する,新しいエンドツーエンドフレームワークを提案する。
本フレームワークのコアとなるのは、ターゲットポーズと条件付き人物の外観を段階的に結合して人体画像を生成する、APS(Appearance-aware Pose Stylizer)と呼ばれる新しいジェネレータである。
論文 参考訳(メタデータ) (2020-07-17T15:58:05Z) - Parameter-Free Style Projection for Arbitrary Style Transfer [64.06126075460722]
本稿では,パラメータフリー,高速,効果的なコンテンツスタイル変換のための特徴レベル変換手法であるStyle Projectionを提案する。
本稿では、任意の画像スタイルの転送にスタイル投影を利用するリアルタイムフィードフォワードモデルを提案する。
論文 参考訳(メタデータ) (2020-03-17T13:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。