論文の概要: I-AI: A Controllable & Interpretable AI System for Decoding
Radiologists' Intense Focus for Accurate CXR Diagnoses
- arxiv url: http://arxiv.org/abs/2309.13550v4
- Date: Sat, 9 Dec 2023 17:39:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 22:17:53.057685
- Title: I-AI: A Controllable & Interpretable AI System for Decoding
Radiologists' Intense Focus for Accurate CXR Diagnoses
- Title(参考訳): I-AI:正確なCXR診断のための放射線科医のインセンスフォーカスを復号するための制御可能・解釈可能なAIシステム
- Authors: Trong Thang Pham, Jacob Brecheisen, Anh Nguyen, Hien Nguyen, Ngan Le
- Abstract要約: 解釈可能な人工知能(I-AI)は、新しく統一された制御可能な解釈可能なパイプラインである。
私たちのI-AIは、放射線科医がどこに見えるか、特定の領域にどのくらい焦点を合わせるか、どの発見を診断するか、という3つの重要な疑問に対処しています。
- 参考スコア(独自算出の注目度): 9.260958560874812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of chest X-ray (CXR) diagnosis, existing works often focus
solely on determining where a radiologist looks, typically through tasks such
as detection, segmentation, or classification. However, these approaches are
often designed as black-box models, lacking interpretability. In this paper, we
introduce Interpretable Artificial Intelligence (I-AI) a novel and unified
controllable interpretable pipeline for decoding the intense focus of
radiologists in CXR diagnosis. Our I-AI addresses three key questions: where a
radiologist looks, how long they focus on specific areas, and what findings
they diagnose. By capturing the intensity of the radiologist's gaze, we provide
a unified solution that offers insights into the cognitive process underlying
radiological interpretation. Unlike current methods that rely on black-box
machine learning models, which can be prone to extracting erroneous information
from the entire input image during the diagnosis process, we tackle this issue
by effectively masking out irrelevant information. Our proposed I-AI leverages
a vision-language model, allowing for precise control over the interpretation
process while ensuring the exclusion of irrelevant features. To train our I-AI
model, we utilize an eye gaze dataset to extract anatomical gaze information
and generate ground truth heatmaps. Through extensive experimentation, we
demonstrate the efficacy of our method. We showcase that the attention
heatmaps, designed to mimic radiologists' focus, encode sufficient and relevant
information, enabling accurate classification tasks using only a portion of
CXR. The code, checkpoints, and data are at https://github.com/UARK-AICV/IAI
- Abstract(参考訳): 胸部X線診断(CXR)の分野では、既存の研究は、放射線技師がどこに見えるか、通常、検出、セグメンテーション、分類などのタスクによって決定することのみに焦点を当てることが多い。
しかしながら、これらのアプローチはしばしばブラックボックスモデルとして設計され、解釈性に欠ける。
本稿では,cxr診断における放射線科医の集中力をデコードするための新しい統一的な制御可能なパイプラインであるi-aiを提案する。
我々のI-AIは、放射線科医がどこに見えるか、特定の領域にどのくらい焦点を合わせるか、どの所見を診断するか、という3つの重要な疑問に対処しています。
放射線科医の視線の強さを捉えることで、放射線学的な解釈の基礎となる認知過程についての洞察を提供する統一的なソリューションを提供する。
診断処理中に入力画像全体から誤情報を抽出する傾向にあるブラックボックス機械学習モデルに依存する現在の手法とは異なり、無関係な情報を効果的にマスキングすることでこの問題に対処する。
提案するi-aiは視覚言語モデルを利用して解釈過程を正確に制御し,無関係な特徴を排除できる。
I-AIモデルをトレーニングするために、眼球データセットを用いて解剖学的視線情報を抽出し、地上の真理熱マップを生成する。
実験により,本手法の有効性を実証した。
放射線学者の焦点を真似た注意熱マップが十分な情報をエンコードし,CXRの一部のみを用いて正確な分類作業を可能にすることを示す。
コード、チェックポイント、データはhttps://github.com/UARK-AICV/IAIにある。
関連論文リスト
- Decoding Radiologists' Intentions: A Novel System for Accurate Region Identification in Chest X-ray Image Analysis [2.207061125661163]
胸部X線(CXR)画像解析では、放射線技師は様々な領域を慎重に観察し、レポートにその観察を記録している。
CXR診断における誤りの頻度、特に経験の浅い放射線科医や病院の住民は、放射線科医の意図とそれに伴う関心領域を理解することの重要性を強調している。
本報告では, 放射線技師がCXR画像に対する関心領域について, 主観的意図を識別するシステムを提案する。
論文 参考訳(メタデータ) (2024-04-29T15:18:26Z) - Enhancing Human-Computer Interaction in Chest X-ray Analysis using Vision and Language Model with Eye Gaze Patterns [7.6599164274971026]
VLM(Vision-Language Models)は、視線データとテキストプロンプトを併用することで、放射線技師の注意を喚起する。
眼球データから生成した熱マップを医療画像にオーバーレイし、放射線技師の集中した領域をハイライトする。
その結果,視線情報の挿入は胸部X線解析の精度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-04-03T00:09:05Z) - Generation of Radiology Findings in Chest X-Ray by Leveraging
Collaborative Knowledge [6.792487817626456]
医学的イメージを解釈する認知的タスクは、放射線学のワークフローにおいて最も重要であり、しばしば時間を要するステップである。
この研究は、ほとんどの時間をFindingsの執筆またはナレーションに費やしている放射線学者の作業量を削減することに焦点を当てている。
単段階画像キャプションタスクとして放射線学レポートを生成する過去の研究とは異なり、CXR画像の解釈の複雑さを考慮に入れている。
論文 参考訳(メタデータ) (2023-06-18T00:51:28Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - Radiomics-Guided Global-Local Transformer for Weakly Supervised
Pathology Localization in Chest X-Rays [65.88435151891369]
Radiomics-Guided Transformer (RGT)は、テキストトグロバル画像情報と、テキストトグロバル情報とを融合する。
RGTは、画像トランスフォーマーブランチ、放射能トランスフォーマーブランチ、および画像と放射線情報を集約する融合層から構成される。
論文 参考訳(メタデータ) (2022-07-10T06:32:56Z) - Breaking with Fixed Set Pathology Recognition through Report-Guided
Contrastive Training [23.506879497561712]
我々は、非構造化医療報告から直接概念を学ぶために、対照的なグローバルローカルなデュアルエンコーダアーキテクチャを採用している。
疾患分類のための大規模胸部X線データセットMIMIC-CXR,CheXpert,ChestX-Ray14について検討した。
論文 参考訳(メタデータ) (2022-05-14T21:44:05Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。