論文の概要: Robust Distributed Learning: Tight Error Bounds and Breakdown Point
under Data Heterogeneity
- arxiv url: http://arxiv.org/abs/2309.13591v1
- Date: Sun, 24 Sep 2023 09:29:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 18:53:41.586947
- Title: Robust Distributed Learning: Tight Error Bounds and Breakdown Point
under Data Heterogeneity
- Title(参考訳): ロバストな分散学習:データ不均一性下での厳密なエラー境界とブレークダウンポイント
- Authors: Youssef Allouah, Rachid Guerraoui, Nirupam Gupta, Rafa\"el Pinot,
Geovani Rizk
- Abstract要約: 本稿では,より現実的な不均一性モデル,すなわち(G,B)-段階的な相似性について考察し,既存の理論よりも学習問題を扱えることを示す。
また、分散学習アルゴリズムの学習誤差に新たな低い境界があることも証明する。
- 参考スコア(独自算出の注目度): 11.2120847961379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The theory underlying robust distributed learning algorithms, designed to
resist adversarial machines, matches empirical observations when data is
homogeneous. Under data heterogeneity however, which is the norm in practical
scenarios, established lower bounds on the learning error are essentially
vacuous and greatly mismatch empirical observations. This is because the
heterogeneity model considered is too restrictive and does not cover basic
learning tasks such as least-squares regression. We consider in this paper a
more realistic heterogeneity model, namely (G,B)-gradient dissimilarity, and
show that it covers a larger class of learning problems than existing theory.
Notably, we show that the breakdown point under heterogeneity is lower than the
classical fraction 1/2. We also prove a new lower bound on the learning error
of any distributed learning algorithm. We derive a matching upper bound for a
robust variant of distributed gradient descent, and empirically show that our
analysis reduces the gap between theory and practice.
- Abstract(参考訳): 逆境マシンに抵抗するように設計された堅牢な分散学習アルゴリズムの基礎となる理論は、データが均質であるときに経験的観察と一致する。
しかし、実際のシナリオの規範であるデータ不均質性の下では、学習誤差の限界は本質的に空白であり、経験的観察と非常に一致しない。
これは、考慮される異質性モデルがあまりにも制限的であり、最小二乗回帰のような基本的な学習タスクを対象としないためである。
本稿では,より現実的な不均一性モデル,すなわち(G,B)-段階的な相似性について考察し,既存の理論よりも学習問題を扱えることを示す。
特に,不均質性下の分解点が古典分数1/2よりも低いことを示す。
また、分散学習アルゴリズムの学習誤差に新たな低い境界があることも証明する。
我々は,分散勾配降下のロバストな変種に対するアッパーバウンドを導出し,理論と実践の間のギャップを経験的に減少させることを示した。
関連論文リスト
- A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
そこで本研究では,データ依存型コンダクタンス(Data-dependent contraction)と呼ばれる手法を提案する。
この技術に加えて、不均衡学習のための微粒な一般化境界が確立され、再重み付けとロジット調整の謎を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-10-07T09:15:08Z) - Fine-grained analysis of non-parametric estimation for pairwise learning [9.676007573960383]
ペアワイズ学習における非パラメトリック推定の一般化性能について検討する。
我々の結果は、ランキング、AUC、ペアワイズ回帰、メートル法、類似性学習など、幅広いペアワイズ学習問題に対処するために利用できる。
論文 参考訳(メタデータ) (2023-05-31T08:13:14Z) - Demystifying Disagreement-on-the-Line in High Dimensions [34.103373453782744]
我々は高次元のランダム特徴回帰における不一致を解析するための理論的基盤を開発する。
CIFAR-10-C、Tiny ImageNet-C、Camelyon17の実験は、我々の理論と一致しており、理論的な発見の普遍性を支持する。
論文 参考訳(メタデータ) (2023-01-31T02:31:18Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
半教師付き学習(SSL)のための最悪ケース整合正則化手法を提案する。
本稿では,ラベル付きトレーニングデータとラベル付きトレーニングデータとを別々に比較した経験的損失項からなるSSLの一般化について述べる。
この境界によって動機づけられたSSLの目的は、元のラベルのないサンプルと、その複数の拡張版との最大の矛盾を最小限に抑えるものである。
論文 参考訳(メタデータ) (2022-09-26T12:04:49Z) - Chaos is a Ladder: A New Theoretical Understanding of Contrastive
Learning via Augmentation Overlap [64.60460828425502]
コントラスト学習の下流性能に関する新たな保証を提案する。
我々の新しい理論は、攻撃的なデータ強化の下で、異なるクラス内サンプルのサポートがより重なり合うという知見に基づいている。
本稿では、下流の精度とよく一致した教師なしモデル選択距離ARCを提案する。
論文 参考訳(メタデータ) (2022-03-25T05:36:26Z) - Robust Unsupervised Learning via L-Statistic Minimization [38.49191945141759]
教師なし学習に焦点をあて、この問題に対する一般的なアプローチを提示する。
重要な仮定は、摂動分布は、許容モデルの特定のクラスに対するより大きな損失によって特徴付けられることである。
教師なし学習におけるいくつかのポピュラーモデルに対する提案基準に関して,一様収束境界を証明した。
論文 参考訳(メタデータ) (2020-12-14T10:36:06Z) - Understanding Double Descent Requires a Fine-Grained Bias-Variance
Decomposition [34.235007566913396]
ラベルに関連付けられた用語への分散の解釈可能で対称的な分解について述べる。
バイアスはネットワーク幅とともに単調に減少するが、分散項は非単調な振る舞いを示す。
我々はまた、著しく豊かな現象論も分析する。
論文 参考訳(メタデータ) (2020-11-04T21:04:02Z) - Theoretical Analysis of Self-Training with Deep Networks on Unlabeled
Data [48.4779912667317]
自己学習アルゴリズムは、ニューラルネットワークを使ってラベルのないデータで学ぶことに成功している。
この研究は、半教師なし学習、教師なしドメイン適応、教師なし学習のための深層ネットワークによる自己学習の統一的理論的解析を提供する。
論文 参考訳(メタデータ) (2020-10-07T19:43:55Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
この動作を駆動するトレーニングデータの2つの重要な特性を特定します。
モデルの"記憶"に対する帰納的バイアスが,パラメータ化の超過を損なう可能性を示す。
論文 参考訳(メタデータ) (2020-05-09T01:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。