Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation
- URL: http://arxiv.org/abs/2309.13604v2
- Date: Fri, 29 Mar 2024 09:59:34 GMT
- Title: Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation
- Authors: Jiayi Ni, Senqiao Yang, Ran Xu, Jiaming Liu, Xiaoqi Li, Wenyu Jiao, Zehui Chen, Yi Liu, Shanghang Zhang,
- Abstract summary: We propose a distribution-aware tuning ( DAT) method to make semantic segmentation CTTA efficient and practical in real-world applications.
DAT adaptively selects and updates two small groups of trainable parameters based on data distribution during the continual adaptation process.
We conduct experiments on two widely-used semantic segmentation CTTA benchmarks, achieving promising performance compared to previous state-of-the-art methods.
- Score: 33.75630514826721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since autonomous driving systems usually face dynamic and ever-changing environments, continual test-time adaptation (CTTA) has been proposed as a strategy for transferring deployed models to continually changing target domains. However, the pursuit of long-term adaptation often introduces catastrophic forgetting and error accumulation problems, which impede the practical implementation of CTTA in the real world. Recently, existing CTTA methods mainly focus on utilizing a majority of parameters to fit target domain knowledge through self-training. Unfortunately, these approaches often amplify the challenge of error accumulation due to noisy pseudo-labels, and pose practical limitations stemming from the heavy computational costs associated with entire model updates. In this paper, we propose a distribution-aware tuning (DAT) method to make the semantic segmentation CTTA efficient and practical in real-world applications. DAT adaptively selects and updates two small groups of trainable parameters based on data distribution during the continual adaptation process, including domain-specific parameters (DSP) and task-relevant parameters (TRP). Specifically, DSP exhibits sensitivity to outputs with substantial distribution shifts, effectively mitigating the problem of error accumulation. In contrast, TRP are allocated to positions that are responsive to outputs with minor distribution shifts, which are fine-tuned to avoid the catastrophic forgetting problem. In addition, since CTTA is a temporal task, we introduce the Parameter Accumulation Update (PAU) strategy to collect the updated DSP and TRP in target domain sequences. We conduct extensive experiments on two widely-used semantic segmentation CTTA benchmarks, achieving promising performance compared to previous state-of-the-art methods.
Related papers
- Analytic Continual Test-Time Adaptation for Multi-Modality Corruption [23.545997349882857]
Test-Time Adaptation (TTA) aims to help pre-trained models bridge the gap between source and target datasets.
We propose a novel approach, Multi-modality Dynamic Analytic Adapter (MDAA) for MM-CTTA tasks.
MDAA achieves state-of-the-art performance on MM-CTTA while ensuring reliable model adaptation.
arXiv Detail & Related papers (2024-10-29T01:21:24Z) - Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
Continual Test-Time Adaptation involves adapting a pre-trained source model to continually changing unsupervised target domains.
We analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting.
We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream.
arXiv Detail & Related papers (2024-07-12T15:48:40Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions.
Our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-12-19T15:34:52Z) - Layer-wise Auto-Weighting for Non-Stationary Test-Time Adaptation [40.03897994619606]
We introduce a layer-wise auto-weighting algorithm for continual and gradual TTA.
We propose an exponential min-max scaler to make certain layers nearly frozen while mitigating outliers.
Experiments on CIFAR-10C, CIFAR-100C, and ImageNet-C show our method outperforms conventional continual and gradual TTA approaches.
arXiv Detail & Related papers (2023-11-10T03:54:40Z) - Effective Restoration of Source Knowledge in Continual Test Time
Adaptation [44.17577480511772]
This paper introduces an unsupervised domain change detection method that is capable of identifying domain shifts in dynamic environments.
By restoring the knowledge from the source, it effectively corrects the negative consequences arising from the gradual deterioration of model parameters.
We perform extensive experiments on benchmark datasets to demonstrate the superior performance of our method compared to state-of-the-art adaptation methods.
arXiv Detail & Related papers (2023-11-08T19:21:48Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
A Continual Test-Time Adaptation task is proposed to adapt the pre-trained model to continually changing target domains.
We design a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-specific and domain-shared knowledge.
Our proposed method achieves state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-06-07T11:18:53Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
Remote Sensing Change Detection (RS-CD) aims to detect relevant changes from Multi-Temporal Remote Sensing Images (MT-RSIs)
The performance of existing RS-CD methods is attributed to training on large annotated datasets.
This paper proposes an unsupervised CD method based on deep metric learning that can deal with both of these issues.
arXiv Detail & Related papers (2023-03-16T17:52:45Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain without using any source data.
CoTTA is easy to implement and can be readily incorporated in off-the-shelf pre-trained models.
arXiv Detail & Related papers (2022-03-25T11:42:02Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.