論文の概要: Modelling and Search-Based Testing of Robot Controllers Using Enzymatic
Numerical P Systems
- arxiv url: http://arxiv.org/abs/2309.13795v1
- Date: Mon, 25 Sep 2023 01:13:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 06:26:51.150860
- Title: Modelling and Search-Based Testing of Robot Controllers Using Enzymatic
Numerical P Systems
- Title(参考訳): 酵素数値Pシステムを用いたロボット制御系のモデリングと探索に基づくテスト
- Authors: Radu Traian Bobe, Florentin Ipate, Ionu\c{t} Mihai Niculescu
- Abstract要約: 教育ロボットにおける車線維持制御器の精度を検証した結果について述べる。
テスト生成には、検索ベースのソフトウェアテストアプローチを実装するオープンソースツールを使用しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The safety of the systems controlled by software is a very important area in
a digitalized society, as the number of automated processes is increasing. In
this paper, we present the results of testing the accuracy of different lane
keeping controllers for an educational robot. In our approach, the robot is
controlled using numerical P systems and enzymatic numerical P systems. For
tests generation, we used an open-source tool implementing a search-based
software testing approach.
- Abstract(参考訳): ソフトウェアによって制御されるシステムの安全性は、自動化プロセスの数が増えるにつれて、デジタル化社会において非常に重要な領域である。
本稿では,教育用ロボットの車線保持制御器の精度を検証した結果について述べる。
本手法では,ロボットは数値Pシステムと酵素数値Pシステムを用いて制御される。
テスト生成には、検索ベースのソフトウェアテストアプローチを実装するオープンソースツールを使用しました。
関連論文リスト
- RAMPA: Robotic Augmented Reality for Machine Programming and Automation [4.963604518596734]
本稿では,RAMPA(Robotic Augmented Reality for Machine Programming)を紹介する。
RAMPAは最先端のARヘッドセット、例えばMeta Quest 3の能力を利用するシステムである。
提案手法は,ユーザの物理的環境内で直接,スキルデモのその場でのデータ記録,可視化,微調整を可能にする。
論文 参考訳(メタデータ) (2024-10-17T10:21:28Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Using Knowledge Representation and Task Planning for Robot-agnostic
Skills on the Example of Contact-Rich Wiping Tasks [44.99833362998488]
本研究では,知識表現,タスク計画,スキル実装の自動選択を利用した単一のロボットスキルを,異なるコンテキストで実行可能であることを示す。
このスキルベースの制御プラットフォームが、異なるロボットシステム上でのコンタクトリッチなワイピングタスクでこれをどのように実現できるかを実証する。
論文 参考訳(メタデータ) (2023-08-27T21:17:32Z) - Tuning Legged Locomotion Controllers via Safe Bayesian Optimization [47.87675010450171]
本稿では,ロボットハードウェアプラットフォームにおけるモデルベースコントローラの展開を効率化するための,データ駆動型戦略を提案する。
モデルフリーな安全な学習アルゴリズムを用いて制御ゲインのチューニングを自動化し、制御定式化で使用される単純化されたモデルと実システムとのミスマッチに対処する。
論文 参考訳(メタデータ) (2023-06-12T13:10:14Z) - AI Enhanced Control Engineering Methods [66.08455276899578]
我々は、AIツールがアプリケーションを制御するのにどのように役立つかを探求する。
直近の2つの応用は、局所安定性解析やカルマンフィルタを用いた状態推定のための系力学の線形化である。
さらに、モデル予測制御アプリケーションにおける状態ベクトルのグローバルパラメータ化と制御入力に対する機械学習モデルの利用について検討する。
論文 参考訳(メタデータ) (2023-06-08T20:31:14Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Learning the Noise of Failure: Intelligent System Tests for Robots [1.713291434132985]
ロボットの自動システムテストにおける故障検出のためのシミュレーションノイズ推定を提案する。
この技術は、人間が成功や失敗を評価することなく、実世界の自動テストを強化することができる。
論文 参考訳(メタデータ) (2021-02-16T11:06:45Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
本稿では,ニューラルネットワークを用いた中央パターン生成機構を実装し,閉ループロボット制御を実現するためのフレームワークを提案する。
本研究では,従順な四足歩行ロボットのシミュレーションモデル上で,予め定義された歩行パターン,速度制御,歩行遷移の学習を実演する。
論文 参考訳(メタデータ) (2020-04-09T14:32:49Z) - Controlled time series generation for automotive software-in-the-loop
testing using GANs [0.5352699766206808]
オートマチックメカトロニクスシステムのテストは、部分的にはソフトウェア・イン・ザ・ループ・アプローチを使用し、システム・アンダー・テストのインプットを体系的にカバーすることが大きな課題である。
ひとつのアプローチは、テストプロセスの制御とフィードバックを容易にする入力シーケンスを作成することだが、現実的なシナリオにシステムを公開できない。
もうひとつは、現実を説明できるフィールド操作から記録されたシーケンスを再生するが、広く使われるには十分なキャパシティの十分なラベル付きデータセットを収集する必要があるため、コストがかかる。
この研究は、GAN(Generative Adrial Networks)のよく知られた教師なし学習フレームワークを適用して、記録された車内データのラベルなしデータセットを学習する。
論文 参考訳(メタデータ) (2020-02-16T16:19:29Z) - Autonomous Control of a Line Follower Robot Using a Q-Learning
Controller [4.306143768014156]
本稿では,ラインフォアロボットを制御するためのシミュレーションベースのQ学習手法を提案する。
ロボットの未知の機械的特性を考えると、システムモデリングとコントローラ設計は極めて困難である。
提案した制御器の有効性を評価するためのシミュレーションと実験結果を提供する。
論文 参考訳(メタデータ) (2020-01-23T22:50:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。