論文の概要: Backorder Prediction in Inventory Management: Classification Techniques
and Cost Considerations
- arxiv url: http://arxiv.org/abs/2309.13837v1
- Date: Mon, 25 Sep 2023 02:50:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 17:10:44.673222
- Title: Backorder Prediction in Inventory Management: Classification Techniques
and Cost Considerations
- Title(参考訳): 在庫管理における後方予測 : 分類手法とコストの考察
- Authors: Sarit Maitra, Sukanya Kundu
- Abstract要約: 本稿では,在庫管理における後方予測のための高度な分析手法を紹介する。
秩序とは、株式の枯渇により直ちに達成できない命令をいう。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces an advanced analytical approach for predicting
backorders in inventory management. Backorder refers to an order that cannot be
immediately fulfilled due to stock depletion. Multiple classification
techniques, including Balanced Bagging Classifiers, Fuzzy Logic, Variational
Autoencoder - Generative Adversarial Networks, and Multi-layer Perceptron
classifiers, are assessed in this work using performance evaluation metrics
such as ROC-AUC and PR-AUC. Moreover, this work incorporates a profit function
and misclassification costs, considering the financial implications and costs
associated with inventory management and backorder handling. The results
demonstrate the effectiveness of the predictive model in enhancing inventory
system service levels, which leads to customer satisfaction and overall
organizational performance. Considering interpretability is a significant
aspect of using AI in commercial applications, permutation importance is
applied to the selected model to determine the importance of features. This
research contributes to the advancement of predictive analytics and offers
valuable insights for future investigations in backorder forecasting and
inventory control optimization for decision-making.
- Abstract(参考訳): 本稿では,在庫管理における後方予測のための高度な分析手法を紹介する。
秩序とは、株式の枯渇により直ちに達成できない命令のこと。
ROC-AUC や PR-AUC などの性能評価指標を用いて, 平衡バッグ分類器, ファジィ論理, 変分オートエンコーダ, 多層パーセプトロン分類器などの複数の分類手法の評価を行った。
さらに、在庫管理や受注処理に関連する金銭的意味やコストを考慮すると、利益関数と誤分類コストが組み込まれている。
その結果,インベントリシステムのサービスレベル向上における予測モデルの有効性が示され,顧客満足度と組織全体のパフォーマンスが得られた。
商業アプリケーションでaiを使用する場合、解釈可能性を考えると、特徴の重要性を決定するために選択されたモデルに置換の重要性が適用される。
本研究は, 予測分析の進歩に寄与し, 後方予測における今後の調査や意思決定のための在庫管理最適化に有用な知見を提供する。
関連論文リスト
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
モンテカルロシミュレーションによる政策評価は多くのMC強化学習(RL)アルゴリズムの中核にある。
本研究では,異なる長さの軌跡を用いた回帰推定器の平均二乗誤差のサロゲートとして品質指標を提案する。
本稿では,Robust and Iterative Data Collection Strategy Optimization (RIDO) という適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T11:47:56Z) - Evaluation of Active Feature Acquisition Methods for Time-varying Feature Settings [6.082810456767599]
機械学習の手法は、入力機能が無償で利用できると仮定することが多い。
機能性の獲得が有害な分野である医療のような領域では、機能の獲得と予測的肯定性とのバランスをとる必要がある。
能動的特徴獲得性能評価(AFAPE)の問題点について述べる。
論文 参考訳(メタデータ) (2023-12-03T23:08:29Z) - Comparative Analysis of Linear Regression, Gaussian Elimination, and LU
Decomposition for CT Real Estate Purchase Decisions [0.0]
コネチカット州で家を購入できるかどうかを予測するために、3つのアルゴリズムが評価された。
線形回帰とLU分解が最も信頼性の高いレコメンデーションを提供した。
R-二乗スコアや平均二乗誤差などの指標を用いてモデルの有効性を評価することにより、各手法の強みと弱みの微妙な理解を提供する。
論文 参考訳(メタデータ) (2023-11-22T15:35:56Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Benefits of Permutation-Equivariance in Auction Mechanisms [90.42990121652956]
競売人の収益を最大化しつつ、競売人の過去の後悔を最小限にする競売メカニズムは、経済学において重要であるが複雑な問題である。
ニューラルネットワークによる最適なオークションメカニズムの学習を通じて、注目すべき進歩が達成されている。
論文 参考訳(メタデータ) (2022-10-11T16:13:25Z) - Budgeted Classification with Rejection: An Evolutionary Method with
Multiple Objectives [0.0]
予算付きシーケンシャル分類器(BSC)プロセスは、部分的特徴取得と評価ステップのシーケンスを通じて入力を行う。
これにより、不要な特徴取得を防止するための入力の効率的な評価が可能になる。
本稿では,信頼度に基づく拒否オプション付き逐次分類器を構築するための問題固有遺伝的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-01T22:05:16Z) - Loss Functions for Discrete Contextual Pricing with Observational Data [8.661128420558349]
顧客および/または製品の特徴に基づいて、各顧客がコンテキスト化された価格で提供される価格設定について検討する。
顧客の真の価値よりも,各顧客が所定の価格で商品を購入しているかどうかを観察する。
論文 参考訳(メタデータ) (2021-11-18T20:12:57Z) - Unifying Gradient Estimators for Meta-Reinforcement Learning via
Off-Policy Evaluation [53.83642844626703]
オフ・ポリシー評価に基づいて,高次値関数の高次微分を推定するための統一フレームワークを提供する。
本フレームワークは, ヘッセン推定の偏りと分散トレードオフを解明する特別事例として, 多くの先行的アプローチを解釈する。
論文 参考訳(メタデータ) (2021-06-24T15:58:01Z) - Classifying variety of customer's online engagement for churn prediction
with mixed-penalty logistic regression [0.0]
混合ペナルティ項を付加することによりロジスティック回帰の分類を促進する機械学習手法に基づく顧客チャーン率の新たな予測分析を提供する。
本研究では,提案手法の分析特性と計算上の優位性を示す。
論文 参考訳(メタデータ) (2021-05-17T08:40:34Z) - Supervised PCA: A Multiobjective Approach [70.99924195791532]
制御主成分分析法(SPCA)
本研究では,これらの目的を両立させる新しいSPCA手法を提案する。
この手法は、任意の教師付き学習損失に対応し、統計的再構成により、一般化された線形モデルの新しい低ランク拡張を提供する。
論文 参考訳(メタデータ) (2020-11-10T18:46:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。