論文の概要: DDTSE: Discriminative Diffusion Model for Target Speech Extraction
- arxiv url: http://arxiv.org/abs/2309.13874v2
- Date: Sun, 06 Oct 2024 11:12:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:08:49.754591
- Title: DDTSE: Discriminative Diffusion Model for Target Speech Extraction
- Title(参考訳): DDTSE:ターゲット音声抽出のための識別拡散モデル
- Authors: Leying Zhang, Yao Qian, Linfeng Yu, Heming Wang, Hemin Yang, Long Zhou, Shujie Liu, Yanmin Qian,
- Abstract要約: ターゲット音声抽出(DDTSE)のための識別拡散モデルを提案する。
拡散モデルと同じ前方プロセスを適用し, 判別法と同様の復元損失を利用する。
モデルトレーニング中に推論過程をエミュレートするための2段階のトレーニング戦略を考案する。
- 参考スコア(独自算出の注目度): 62.422291953387955
- License:
- Abstract: Diffusion models have gained attention in speech enhancement tasks, providing an alternative to conventional discriminative methods. However, research on target speech extraction under multi-speaker noisy conditions remains relatively unexplored. Moreover, the superior quality of diffusion methods typically comes at the cost of slower inference speed. In this paper, we introduce the Discriminative Diffusion model for Target Speech Extraction (DDTSE). We apply the same forward process as diffusion models and utilize the reconstruction loss similar to discriminative methods. Furthermore, we devise a two-stage training strategy to emulate the inference process during model training. DDTSE not only works as a standalone system, but also can further improve the performance of discriminative models without additional retraining. Experimental results demonstrate that DDTSE not only achieves higher perceptual quality but also accelerates the inference process by 3 times compared to the conventional diffusion model.
- Abstract(参考訳): 拡散モデルは音声強調タスクに注目され、従来の識別手法に代わるものとなっている。
しかし,複数話者雑音条件下でのターゲット音声抽出に関する研究は,いまだに未検討である。
さらに、拡散法の優れた品質は、典型的には推論速度を遅くするコストがかかる。
本稿では,ターゲット音声抽出(DDTSE)のための識別拡散モデルを提案する。
拡散モデルと同じ前方プロセスを適用し, 判別法と同様の復元損失を利用する。
さらに、モデルトレーニング中に推論過程をエミュレートするための2段階のトレーニング戦略を考案した。
DDTSEはスタンドアロンシステムとして機能するだけでなく、さらなるリトレーニングなしに差別モデルの性能をさらに向上させることができる。
実験結果から,DDTSEは知覚品質の向上だけでなく,従来の拡散モデルに比べて3倍の推算速度を向上することがわかった。
関連論文リスト
- Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
蒸留不要1ステップ拡散モデルを提案する。
具体的には、敵対的訓練に参加するためのノイズ認識識別器(NAD)を提案する。
我々は、エッジ対応disTS(EA-DISTS)による知覚損失を改善し、詳細な情報を生成するモデルの能力を向上させる。
論文 参考訳(メタデータ) (2024-10-05T16:41:36Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
トレーニングメンバーシップ推論(TMI)タスクは、ターゲットモデルのトレーニングプロセスで特定のサンプルが使用されているかどうかを判断することを目的としている。
本稿では,拡散モデル内における本質的な生成先行情報を活用することで,TMIタスクの新たな視点を探求する。
論文 参考訳(メタデータ) (2024-03-13T12:52:37Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Variance-Preserving-Based Interpolation Diffusion Models for Speech
Enhancement [53.2171981279647]
本稿では,VP-および分散拡散(VE)に基づく拡散法の両方をカプセル化するフレームワークを提案する。
本研究では,拡散モデルで発生する一般的な困難を解析し,性能の向上とモデルトレーニングの容易化を図る。
我々は,提案手法の有効性を示すために,公開ベンチマークを用いたいくつかの手法によるモデルの評価を行った。
論文 参考訳(メタデータ) (2023-06-14T14:22:22Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。