Skip-Connected Neural Networks with Layout Graphs for Floor Plan
Auto-Generation
- URL: http://arxiv.org/abs/2309.13881v2
- Date: Tue, 26 Sep 2023 03:16:31 GMT
- Title: Skip-Connected Neural Networks with Layout Graphs for Floor Plan
Auto-Generation
- Authors: Yuntae Jeon, Dai Quoc Tran, Seunghee Park
- Abstract summary: This paper presents a novel approach using skip-connected neural networks integrated with layout graphs.
The skip-connected layers capture multi-scale floor plan information, and the encoder-decoder networks with GNN facilitate pixel-level probability-based generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of AI and computer vision techniques, the quest for automated
and efficient floor plan designs has gained momentum. This paper presents a
novel approach using skip-connected neural networks integrated with layout
graphs. The skip-connected layers capture multi-scale floor plan information,
and the encoder-decoder networks with GNN facilitate pixel-level
probability-based generation. Validated on the MSD dataset, our approach
achieved a 93.9 mIoU score in the 1st CVAAD workshop challenge. Code and
pre-trained models are publicly available at
https://github.com/yuntaeJ/SkipNet-FloorPlanGe.
Related papers
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Pathfinding Neural Cellular Automata [23.831530224401575]
Pathfinding is an important sub-component of a broad range of complex AI tasks, such as robot path planning, transport routing, and game playing.
We hand-code and learn models for Breadth-First Search (BFS), i.e. shortest path finding.
We present a neural implementation of Depth-First Search (DFS), and outline how it can be combined with neural BFS to produce an NCA for computing diameter of a graph.
We experiment with architectural modifications inspired by these hand-coded NCAs, training networks from scratch to solve the diameter problem on grid mazes while exhibiting strong ability generalization
arXiv Detail & Related papers (2023-01-17T11:45:51Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - End-to-end Graph-constrained Vectorized Floorplan Generation with
Panoptic Refinement [16.103152098205566]
We aim to synthesize floorplans as sequences of 1-D vectors, which eases user interaction and design customization.
In the first stage, we encode the room connectivity graph input by users with a graphal network (GCN), then apply an autoregressive transformer network to generate an initial floorplan sequence.
To polish the initial design and generate more visually appealing floorplans, we further propose a novel panoptic refinement network(PRN) composed of a GCN and a transformer network.
arXiv Detail & Related papers (2022-07-27T03:19:20Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - HPGNN: Using Hierarchical Graph Neural Networks for Outdoor Point Cloud
Processing [0.7649716717097428]
Motivated by recent improvements in point cloud processing for autonomous navigation, we focus on using hierarchical graph neural networks for processing.
We propose Hierarchical Point Graph Neural Network (HPGNN)
It learns node features at various levels of graph coarseness to extract information.
This enables to learn over a large point cloud while retaining fine details that existing point-level graph networks struggle to achieve.
arXiv Detail & Related papers (2022-06-05T11:18:09Z) - Room Classification on Floor Plan Graphs using Graph Neural Networks [0.0]
We present our approach to improve room classification task on floor plan maps of buildings by representing floor plans as undirected graphs.
Rooms in the floor plans are represented as nodes in the graph with edges representing their adjacency in the map.
Our results show that graph neural networks, specifically GraphSAGE and Topology Adaptive GCN were able to achieve accuracy of 80% and 81% respectively.
arXiv Detail & Related papers (2021-08-12T19:59:22Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
This report presents design considerations for automatically generating satellite imagery datasets for training machine learning models.
We discuss issues faced from the point of view of deep neural network training and evaluation.
arXiv Detail & Related papers (2021-04-28T15:13:12Z) - FatNet: A Feature-attentive Network for 3D Point Cloud Processing [1.502579291513768]
We introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings.
Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset.
arXiv Detail & Related papers (2021-04-07T23:13:56Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Hallucinative Topological Memory for Zero-Shot Visual Planning [86.20780756832502]
In visual planning (VP), an agent learns to plan goal-directed behavior from observations of a dynamical system obtained offline.
Most previous works on VP approached the problem by planning in a learned latent space, resulting in low-quality visual plans.
Here, we propose a simple VP method that plans directly in image space and displays competitive performance.
arXiv Detail & Related papers (2020-02-27T18:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.