論文の概要: Recursive Counterfactual Deconfounding for Object Recognition
- arxiv url: http://arxiv.org/abs/2309.13924v1
- Date: Mon, 25 Sep 2023 07:46:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 16:41:00.004153
- Title: Recursive Counterfactual Deconfounding for Object Recognition
- Title(参考訳): オブジェクト認識のための再帰的因果分解
- Authors: Jiayin Sun, Hong Wang and Qiulei Dong
- Abstract要約: 本稿では,クローズドセットとオープンセットの両方のシナリオにおいて,オブジェクト認識のための再帰的因果分解モデルを提案する。
提案したRCDモデルは,ほとんどの場合において,11の最先端ベースラインよりも優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 20.128093193861165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image recognition is a classic and common task in the computer vision field,
which has been widely applied in the past decade. Most existing methods in
literature aim to learn discriminative features from labeled images for
classification, however, they generally neglect confounders that infiltrate
into the learned features, resulting in low performances for discriminating
test images. To address this problem, we propose a Recursive Counterfactual
Deconfounding model for object recognition in both closed-set and open-set
scenarios based on counterfactual analysis, called RCD. The proposed model
consists of a factual graph and a counterfactual graph, where the relationships
among image features, model predictions, and confounders are built and updated
recursively for learning more discriminative features. It performs in a
recursive manner so that subtler counterfactual features could be learned and
eliminated progressively, and both the discriminability and generalization of
the proposed model could be improved accordingly. In addition, a negative
correlation constraint is designed for alleviating the negative effects of the
counterfactual features further at the model training stage. Extensive
experimental results on both closed-set recognition task and open-set
recognition task demonstrate that the proposed RCD model performs better than
11 state-of-the-art baselines significantly in most cases.
- Abstract(参考訳): 画像認識はコンピュータビジョン分野において古典的で一般的なタスクであり、この10年間広く適用されてきた。
文献における既存のほとんどの方法は、ラベル付き画像から識別的特徴を学習することを目的としているが、一般的には、学習した特徴に侵入する共同ファウンダーを無視し、結果としてテスト画像の識別性能が低下する。
この問題に対処するために, RCD と呼ばれる逆ファクト解析に基づく, クローズドセットとオープンセットの両方のシナリオにおけるオブジェクト認識のための再帰的反事実分解モデルを提案する。
提案手法は, 画像特徴量, モデル予測, コンビネータ間の関係を, より識別的な特徴を学習するために再帰的に構築し, 更新する, 事実グラフと反事実グラフからなる。
この手法は再帰的に動作し,より微妙な反事実的特徴を学習し,段階的に排除し,提案モデルの識別性と一般化の両方を改善することができる。
また、モデル訓練段階における反事実的特徴の負の効果を緩和するために負相関制約が設計されている。
クローズドセット認識タスクとオープンセット認識タスクの両方の広範な実験結果から,提案するrcdモデルは,ほとんどの場合,11の最先端ベースラインよりも優れた性能を示す。
関連論文リスト
- Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
抽出した特徴量の均等分布を保証するために正規化手法を導入する。
その明らかな単純さにもかかわらず、我々の手法は様々な細粒度視覚認識データセットに対して顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-09-03T07:32:46Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Symmetrical Bidirectional Knowledge Alignment for Zero-Shot Sketch-Based
Image Retrieval [69.46139774646308]
本稿ではゼロショットスケッチベース画像検索(ZS-SBIR)の問題点について検討する。
目に見えないカテゴリのスケッチをクエリとして使用して、同じカテゴリのイメージにマッチさせることが目的だ。
ゼロショットスケッチに基づく画像検索(SBKA)のための新しい対称双方向知識アライメントを提案する。
論文 参考訳(メタデータ) (2023-12-16T04:50:34Z) - DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual Explanations [35.458709912618176]
ディープラーニングは、ImageNetのような複雑な画像分類タスク、予期せぬ障害モード、例えばスプリアス機能などに大きな進歩をもたらした。
安全クリティカルなタスクでは、その決定のブラックボックスの性質は問題であり、説明や少なくとも意思決定を行う方法が緊急に必要である。
本稿では,これらの問題に対して,ガイド画像生成のためのフレームワークを用いて分類器由来の目的を最適化した画像を生成する。
論文 参考訳(メタデータ) (2023-11-29T17:35:29Z) - Few-shot Image Classification based on Gradual Machine Learning [6.935034849731568]
少ないショット画像分類は、ラベル付きサンプルのみを使用してラベル付きイメージを正確に分類することを目的としている。
段階的機械学習(GML)の非i.dパラダイムに基づく新しいアプローチを提案する。
提案手法は精度でSOTAの性能を1-5%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-07-28T12:30:41Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
我々は、ゼロショット動作認識(ZSAR)のためのビデオデータとテキストラベルを共同で符号化するクロスモーダルトランスフォーマーベースのフレームワークを提案する。
我々のモデルは概念的に新しいパイプラインを使用し、視覚的表現と視覚的意味的関連をエンドツーエンドで学習する。
実験結果から,本モデルはZSARの芸術的状況に大きく改善され,UCF101,HMDB51,ActivityNetベンチマークデータセット上でトップ1の精度が向上した。
論文 参考訳(メタデータ) (2022-05-03T17:39:27Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
本稿では,各カテゴリのカテゴリ固有のセマンティック表現を学習するための,新しい,効果的なセマンティック表現と依存性学習(SRDL)フレームワークを提案する。
具体的には,カテゴリー別注意領域(CAR)モジュールを設計し,チャネル/空間的注意行列を生成してモデルを導出する。
また、カテゴリ間のセマンティック依存を暗黙的に学習するオブジェクト消去(OE)モジュールを設計し、セマンティック認識領域を消去する。
論文 参考訳(メタデータ) (2022-04-08T00:55:15Z) - Evaluating and Mitigating Bias in Image Classifiers: A Causal
Perspective Using Counterfactuals [27.539001365348906]
本稿では、逆学習推論(ALI)の改良版に構造因果モデル(SCM)を組み込むことにより、逆ファクトアルを生成する方法を提案する。
本稿では,事前学習された機械学習分類器の説明方法を示し,そのバイアスを評価し,そのバイアスを正則化器を用いて緩和する方法について述べる。
論文 参考訳(メタデータ) (2020-09-17T13:19:31Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。