論文の概要: FakeReasoning: Towards Generalizable Forgery Detection and Reasoning
- arxiv url: http://arxiv.org/abs/2503.21210v1
- Date: Thu, 27 Mar 2025 06:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:41.467717
- Title: FakeReasoning: Towards Generalizable Forgery Detection and Reasoning
- Title(参考訳): FakeReasoning: 一般化可能な偽造検出と推論を目指して
- Authors: Yueying Gao, Dongliang Chang, Bingyao Yu, Haotian Qin, Lei Chen, Kongming Liang, Zhanyu Ma,
- Abstract要約: フォージェリ検出・推論タスク(FDR-Task)としてのAI生成画像の検出と説明のモデル化を提案する。
10つの生成モデルにわたる100K画像を含む大規模データセットであるMulti-Modal Forgery Reasoning dataset (MMFR-Dataset)を紹介する。
また、FakeReasoningという2つの重要なコンポーネントを持つ偽検出および推論フレームワークも提案する。
- 参考スコア(独自算出の注目度): 24.8865218866598
- License:
- Abstract: Accurate and interpretable detection of AI-generated images is essential for mitigating risks associated with AI misuse. However, the substantial domain gap among generative models makes it challenging to develop a generalizable forgery detection model. Moreover, since every pixel in an AI-generated image is synthesized, traditional saliency-based forgery explanation methods are not well suited for this task. To address these challenges, we propose modeling AI-generated image detection and explanation as a Forgery Detection and Reasoning task (FDR-Task), leveraging vision-language models (VLMs) to provide accurate detection through structured and reliable reasoning over forgery attributes. To facilitate this task, we introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 100K images across 10 generative models, with 10 types of forgery reasoning annotations, enabling comprehensive evaluation of FDR-Task. Additionally, we propose FakeReasoning, a forgery detection and reasoning framework with two key components. First, Forgery-Aligned Contrastive Learning enhances VLMs' understanding of forgery-related semantics through both cross-modal and intra-modal contrastive learning between images and forgery attribute reasoning. Second, a Classification Probability Mapper bridges the optimization gap between forgery detection and language modeling by mapping the output logits of VLMs to calibrated binary classification probabilities. Experiments across multiple generative models demonstrate that FakeReasoning not only achieves robust generalization but also outperforms state-of-the-art methods on both detection and reasoning tasks.
- Abstract(参考訳): AI生成画像の正確かつ解釈可能な検出は、AI誤用に伴うリスクを軽減するために不可欠である。
しかし、生成モデル間の領域ギャップは、一般化可能な偽造検出モデルの開発を困難にしている。
さらに、AI生成画像中のすべてのピクセルが合成されるため、従来の唾液ベースの偽造説明法は、このタスクには適していない。
これらの課題に対処するために,我々は,AI生成画像の検出と説明をFDR-Task(Forgery Detection and Reasoning Task)としてモデル化することを提案する。
この作業を容易にするために、FDR-Taskの包括的な評価を可能にする10種類の偽推論アノテーションを備えた10生成モデルに100K画像を含む大規模データセットであるMulti-Modal Forgery Reasoning dataset (MMFR-Dataset)を導入する。
さらに,2つのキーコンポーネントを持つ偽検出・推論フレームワークであるFakeReasoningを提案する。
Forgery-Aligned Contrastive Learningは、画像間のクロスモーダルおよびイントラモーダルのコントラスト学習とフォージェリ属性推論の両方を通して、VLMのフォージェリ関連セマンティクスの理解を強化する。
第二に、分類確率マップパは、VLMの出力ロジットを校正二項分類確率にマッピングすることで、偽検出と言語モデリングの最適化ギャップを橋渡しする。
複数の生成モデルにまたがる実験により、FakeReasoningは堅牢な一般化を達成するだけでなく、検出タスクと推論タスクの両方において最先端の手法よりも優れていることが示された。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - Recursive Counterfactual Deconfounding for Object Recognition [20.128093193861165]
本稿では,クローズドセットとオープンセットの両方のシナリオにおいて,オブジェクト認識のための再帰的因果分解モデルを提案する。
提案したRCDモデルは,ほとんどの場合において,11の最先端ベースラインよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2023-09-25T07:46:41Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。