Many-photon scattering and entangling in a waveguide with a
{\Lambda}-type atom
- URL: http://arxiv.org/abs/2309.13969v1
- Date: Mon, 25 Sep 2023 09:06:28 GMT
- Title: Many-photon scattering and entangling in a waveguide with a
{\Lambda}-type atom
- Authors: Denis Ilin and Alexander V. Poshakinskiy
- Abstract summary: We show that after transmission of a short few-photon pulse, the final state of the atom and all the photons is a genuine multipartite entangled state belonging to the W class.
The parameters of the input pulse are optimized to maximize the efficiency of three- and four-partite W-state production.
- Score: 55.2480439325792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop the analytical theory that describes simultaneous transmission of
several photons through a waveguide coupled to a $\Lambda$-type atom. We show
that after transmission of a short few-photon pulse, the final state of the
atom and all the photons is a genuine multipartite entangled state belonging to
the W class. The parameters of the input pulse are optimized to maximize the
efficiency of three- and four-partite W-state production.
Related papers
- Direct detection of down-converted photons spontaneously produced at a single Josephson junction [0.0]
We study spontaneous photon decay into multiple photons triggered by strong non-linearities in a superconducting quantum simulator.
Results open exciting prospects for the burgeoning field of many-body quantum optics.
arXiv Detail & Related papers (2024-05-01T09:49:03Z) - Exact solution of a lambda quantum system driven by a two-photon
wavepacket [0.0]
We analytically find the non-perturbative dynamics of an atom driven by a two-photon wavepacket.
As an application, we study the dynamics of a quantum state purification.
arXiv Detail & Related papers (2023-12-08T20:24:24Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Three-photon excitation of quantum two-level systems [0.0]
We demonstrate that semiconductor quantum dots can be excited efficiently in a resonant three-photon process.
Time-dependent Floquet theory is used to quantify the strength of the multi-photon processes.
We exploit this technique to probe intrinsic properties of InGaN quantum dots.
arXiv Detail & Related papers (2022-02-04T09:20:24Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z) - Interaction signatures and non-Gaussian photon states from a strongly
driven atomic ensemble coupled to a nanophotonic waveguide [0.0]
We study theoretically a laser-driven one-dimensional chain of atoms interfaced with the guided optical modes of a nanophotonic waveguide.
We find that the fluorescence excitation line shape changes as the number of atoms is increased, eventually undergoing a splitting that provides evidence for the waveguide-mediated all-to-all interactions.
arXiv Detail & Related papers (2020-03-03T16:13:34Z) - Emergent photon pair propagation in circuit QED with superconducting
processors [0.0]
We show that for a suitable choice of the coupling ratio between different levels, the single photon propagation is suppressed and the propagation of photon pairs emerges.
This propagation of photon pairs leads to the pair superfluid of polaritons associated to the system.
arXiv Detail & Related papers (2020-02-27T19:44:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.