論文の概要: Physics-Driven ML-Based Modelling for Correcting Inverse Estimation
- arxiv url: http://arxiv.org/abs/2309.13985v1
- Date: Mon, 25 Sep 2023 09:37:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 16:09:31.624752
- Title: Physics-Driven ML-Based Modelling for Correcting Inverse Estimation
- Title(参考訳): 物理駆動mlモデルによる逆推定の補正
- Authors: Ruiyuan Kang, Tingting Mu, Panos Liatsis, Dimitrios C. Kyritsis
- Abstract要約: この研究は、SAE逆問題にそれらを採用する前に失敗した状態推定を検出し、修正することに焦点を当てている。
本稿では,低エラーと高効率の両方を実現することを目的として,GEESEという新しい手法を提案する。
GEESEは3つの実世界のSAE逆問題でテストされ、最先端の最適化/探索手法と比較される。
- 参考スコア(独自算出の注目度): 6.018296524383859
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: When deploying machine learning estimators in science and engineering (SAE)
domains, it is critical to avoid failed estimations that can have disastrous
consequences, e.g., in aero engine design. This work focuses on detecting and
correcting failed state estimations before adopting them in SAE inverse
problems, by utilizing simulations and performance metrics guided by physical
laws. We suggest to flag a machine learning estimation when its physical model
error exceeds a feasible threshold, and propose a novel approach, GEESE, to
correct it through optimization, aiming at delivering both low error and high
efficiency. The key designs of GEESE include (1) a hybrid surrogate error model
to provide fast error estimations to reduce simulation cost and to enable
gradient based backpropagation of error feedback, and (2) two generative models
to approximate the probability distributions of the candidate states for
simulating the exploitation and exploration behaviours. All three models are
constructed as neural networks. GEESE is tested on three real-world SAE inverse
problems and compared to a number of state-of-the-art optimization/search
approaches. Results show that it fails the least number of times in terms of
finding a feasible state correction, and requires physical evaluations less
frequently in general.
- Abstract(参考訳): 科学と工学(SAE)領域に機械学習推定器を配置する際には、エアロエンジンの設計など、悲惨な結果をもたらす可能性のある推定失敗を避けることが重要である。
本研究は, 物理法則に基づくシミュレーションと性能指標を用いて, sae逆問題に適用する前に, 故障状態推定の検出と修正に焦点をあてる。
我々は,物理モデル誤差が実現可能なしきい値を超えた場合の機械学習推定をフラグアップすることを提案し,低エラーと高効率の両方を実現することを目的とした,最適化による修正のための新しいアプローチであるGEESEを提案する。
GEESEの鍵となる設計は,(1)シミュレーションコストを削減し,誤差フィードバックの勾配に基づくバックプロパゲーションを可能にするハイブリッド・サロゲート・エラーモデル,(2)評価と探索の振る舞いをシミュレートするための候補状態の確率分布を近似する2つの生成モデルである。
3つのモデルはいずれもニューラルネットワークとして構築されている。
GEESEは3つの実世界のSAE逆問題でテストされ、最先端の最適化/探索手法と比較される。
結果は、実現可能な状態補正を見つけるのに最低でも失敗することを示し、一般的には物理的評価をあまり必要としないことを示している。
関連論文リスト
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
実世界の機械学習システムは、基礎となるデータ生成プロセスの分散シフトによって、モデルの性能劣化に遭遇することが多い。
概念のドリフト適応のような既存のシフトへのアプローチは、その理性に依存しない性質によって制限される。
我々はこれらの制限を克服するために自己修復機械学習(SHML)を提案する。
論文 参考訳(メタデータ) (2024-10-31T20:05:51Z) - Decoupled and Interactive Regression Modeling for High-performance One-stage 3D Object Detection [8.531052087985097]
回帰タスクにおけるバウンディングボックスモデリングの不十分さは、1段階の3Dオブジェクト検出の性能を制約する。
一段階検出のための疎結合・インタラクティブ回帰モデリング(DIRM)を提案する。
論文 参考訳(メタデータ) (2024-09-01T10:47:22Z) - Physics-Driven AI Correction in Laser Absorption Sensing Quantification [2.403858349180771]
レーザー吸収分光法(LAS)の定量化は、気体の温度と濃度を測定するのによく用いられるツールである。
現在のMLベースのソリューションは、その測定信頼性を保証することはできない。
この問題に対処するための新しいフレームワークSPECを提案する。
論文 参考訳(メタデータ) (2024-08-20T10:29:41Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - On the failure of variational score matching for VAE models [3.8073142980733]
本稿では,多様なデータセットやネットワークアーキテクチャ上での破滅的な障害を示す,既存の変分SM目標に対する批判的研究について述べる。
可変オートエンコーダ (VAE) モデルを最適化する際に, 等価な自動エンコード損失から目的に関する理論的知見が直接現れる。
論文 参考訳(メタデータ) (2022-10-24T16:43:04Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
本稿では,誤りシミュレーションエンジンを用いて,コナールニューラルネットワーク(CNN)の信頼性解析のためのフレームワークを提案する。
これらの誤差モデルは、故障によって誘導されるCNN演算子の出力の破損パターンに基づいて定義される。
提案手法は,SASSIFIの欠陥効果の約99%の精度と,限定的なエラーモデルのみを実装した44倍から63倍までのスピードアップを実現する。
論文 参考訳(メタデータ) (2022-06-04T19:45:02Z) - Probabilistic model-error assessment of deep learning proxies: an
application to real-time inversion of borehole electromagnetic measurements [0.0]
深部電磁法(EM)測定における深部学習モデルの近似特性と関連するモデル誤差の影響について検討した。
フォワードモデルとしてディープニューラルネットワーク(DNN)を使用することで、数秒で数千のモデル評価を実行できます。
本稿では, モデル誤差を無視しながら, EM測定の逆転に伴う問題を明らかにする数値計算結果を提案する。
論文 参考訳(メタデータ) (2022-05-25T11:44:48Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Designing Accurate Emulators for Scientific Processes using
Calibration-Driven Deep Models [33.935755695805724]
Learn-by-Calibrating (LbC)は、科学応用においてエミュレータを設計するための新しいディープラーニングアプローチである。
また,LbCは広く適応された損失関数の選択に対して,一般化誤差を大幅に改善することを示した。
LbCは、小さなデータレギュレータでも高品質なエミュレータを実現し、さらに重要なことは、明確な事前条件なしで固有のノイズ構造を復元する。
論文 参考訳(メタデータ) (2020-05-05T16:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。