Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping
- URL: http://arxiv.org/abs/2309.14029v1
- Date: Mon, 25 Sep 2023 10:51:47 GMT
- Title: Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping
- Authors: I\~nigo Martinez
- Abstract summary: The proliferation and ubiquity of temporal data across many disciplines has sparked interest for similarity, classification and clustering methods.
Traditional distance measures such as the Euclidean are not well-suited due to the time-dependent nature of the data.
This thesis proposes novel elastic alignment methods that use parametric & diffeomorphic warping transformations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation and ubiquity of temporal data across many disciplines has
sparked interest for similarity, classification and clustering methods
specifically designed to handle time series data. A core issue when dealing
with time series is determining their pairwise similarity, i.e., the degree to
which a given time series resembles another. Traditional distance measures such
as the Euclidean are not well-suited due to the time-dependent nature of the
data. Elastic metrics such as dynamic time warping (DTW) offer a promising
approach, but are limited by their computational complexity,
non-differentiability and sensitivity to noise and outliers. This thesis
proposes novel elastic alignment methods that use parametric \& diffeomorphic
warping transformations as a means of overcoming the shortcomings of DTW-based
metrics. The proposed method is differentiable \& invertible, well-suited for
deep learning architectures, robust to noise and outliers, computationally
efficient, and is expressive and flexible enough to capture complex patterns.
Furthermore, a closed-form solution was developed for the gradient of these
diffeomorphic transformations, which allows an efficient search in the
parameter space, leading to better solutions at convergence. Leveraging the
benefits of these closed-form diffeomorphic transformations, this thesis
proposes a suite of advancements that include: (a) an enhanced temporal
transformer network for time series alignment and averaging, (b) a
deep-learning based time series classification model to simultaneously align
and classify signals with high accuracy, (c) an incremental time series
clustering algorithm that is warping-invariant, scalable and can operate under
limited computational and time resources, and finally, (d) a normalizing flow
model that enhances the flexibility of affine transformations in coupling and
autoregressive layers.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
We propose a novel Adaptive Multi-Scale Decomposition (AMD) framework for time series forecasting (TSF)
Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block.
Our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration.
arXiv Detail & Related papers (2024-06-06T05:27:33Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Invertible Solution of Neural Differential Equations for Analysis of
Irregularly-Sampled Time Series [4.14360329494344]
We propose an invertible solution of Neural Differential Equations (NDE)-based method to handle the complexities of irregular and incomplete time series data.
Our method suggests the variation of Neural Controlled Differential Equations (Neural CDEs) with Neural Flow, which ensures invertibility while maintaining a lower computational burden.
At the core of our approach is an enhanced dual latent states architecture, carefully designed for high precision across various time series tasks.
arXiv Detail & Related papers (2024-01-10T07:51:02Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
This paper proposes an efficient nonlinear modeling approach for multiple time series.
It incorporates nonlinear interactions among different time-series variables.
Experimental results show that the proposed algorithm improves the identification of the support of the VAR coefficients in a parsimonious manner.
arXiv Detail & Related papers (2023-09-29T11:42:59Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Closed-Form Diffeomorphic Transformations for Time Series Alignment [0.0]
We present a closed-form expression for the ODE solution and its gradient under continuous piecewise-affine velocity functions.
Results show significant improvements both in terms of efficiency and accuracy.
arXiv Detail & Related papers (2022-06-16T12:02:12Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
We propose a flexible model that is capable of identifying both state- and time-dependent switching dynamics.
State-dependent switching is enabled by a recurrent state-to-switch connection.
An explicit duration count variable is used to improve the time-dependent switching behavior.
arXiv Detail & Related papers (2021-10-26T17:35:21Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
Recent developments in approaches based on deep learning have achieved sub-second runtimes for DiffIR.
We propose a simple iterative scheme that functionally composes intermediate non-stationary velocity fields.
We then propose a convex optimisation model that uses a regularisation term of arbitrary order to impose smoothness on these velocity fields.
arXiv Detail & Related papers (2021-09-26T19:56:45Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
We present DiffPD, an efficient differentiable soft-body simulator with implicit time integration.
We evaluate the performance of DiffPD and observe a speedup of 4-19 times compared to the standard Newton's method in various applications.
arXiv Detail & Related papers (2021-01-15T00:13:33Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
We develop a hierarchy of deep neural network time-steppers to approximate the flow map of the dynamical system over a disparate range of time-scales.
The resulting model is purely data-driven and leverages features of the multiscale dynamics.
We benchmark our algorithm against state-of-the-art methods, such as LSTM, reservoir computing, and clockwork RNN.
arXiv Detail & Related papers (2020-08-22T07:16:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.