Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping
- URL: http://arxiv.org/abs/2309.14029v1
- Date: Mon, 25 Sep 2023 10:51:47 GMT
- Title: Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping
- Authors: I\~nigo Martinez
- Abstract summary: The proliferation and ubiquity of temporal data across many disciplines has sparked interest for similarity, classification and clustering methods.
Traditional distance measures such as the Euclidean are not well-suited due to the time-dependent nature of the data.
This thesis proposes novel elastic alignment methods that use parametric & diffeomorphic warping transformations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation and ubiquity of temporal data across many disciplines has
sparked interest for similarity, classification and clustering methods
specifically designed to handle time series data. A core issue when dealing
with time series is determining their pairwise similarity, i.e., the degree to
which a given time series resembles another. Traditional distance measures such
as the Euclidean are not well-suited due to the time-dependent nature of the
data. Elastic metrics such as dynamic time warping (DTW) offer a promising
approach, but are limited by their computational complexity,
non-differentiability and sensitivity to noise and outliers. This thesis
proposes novel elastic alignment methods that use parametric \& diffeomorphic
warping transformations as a means of overcoming the shortcomings of DTW-based
metrics. The proposed method is differentiable \& invertible, well-suited for
deep learning architectures, robust to noise and outliers, computationally
efficient, and is expressive and flexible enough to capture complex patterns.
Furthermore, a closed-form solution was developed for the gradient of these
diffeomorphic transformations, which allows an efficient search in the
parameter space, leading to better solutions at convergence. Leveraging the
benefits of these closed-form diffeomorphic transformations, this thesis
proposes a suite of advancements that include: (a) an enhanced temporal
transformer network for time series alignment and averaging, (b) a
deep-learning based time series classification model to simultaneously align
and classify signals with high accuracy, (c) an incremental time series
clustering algorithm that is warping-invariant, scalable and can operate under
limited computational and time resources, and finally, (d) a normalizing flow
model that enhances the flexibility of affine transformations in coupling and
autoregressive layers.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.