論文の概要: An automatic selection of optimal recurrent neural network architecture
for processes dynamics modelling purposes
- arxiv url: http://arxiv.org/abs/2309.14037v1
- Date: Mon, 25 Sep 2023 11:06:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 16:01:18.431283
- Title: An automatic selection of optimal recurrent neural network architecture
for processes dynamics modelling purposes
- Title(参考訳): プロセスダイナミクスモデリングのための最適リカレントニューラルネットワークアーキテクチャの自動選択
- Authors: Krzysztof Laddach, Rafa{\l} {\L}angowski, Tomasz A. Rutkowski, Bartosz
Puchalski
- Abstract要約: この研究には、ニューラルネットワークアーキテクチャ検索専用のアルゴリズムの提案が4つ含まれている。
アルゴリズムは進化的アルゴリズムや勾配降下法のようなよく知られた最適化手法に基づいている。
この研究は、加圧水型原子炉で発生した高速過程の数学的モデルから生成されたデータに基づく、拡張された検証研究を含む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A problem related to the development of algorithms designed to find the
structure of artificial neural network used for behavioural (black-box)
modelling of selected dynamic processes has been addressed in this paper. The
research has included four original proposals of algorithms dedicated to neural
network architecture search. Algorithms have been based on well-known
optimisation techniques such as evolutionary algorithms and gradient descent
methods. In the presented research an artificial neural network of recurrent
type has been used, whose architecture has been selected in an optimised way
based on the above-mentioned algorithms. The optimality has been understood as
achieving a trade-off between the size of the neural network and its accuracy
in capturing the response of the mathematical model under which it has been
learnt. During the optimisation, original specialised evolutionary operators
have been proposed. The research involved an extended validation study based on
data generated from a mathematical model of the fast processes occurring in a
pressurised water nuclear reactor.
- Abstract(参考訳): 本稿では,選択された動的プロセスの挙動(ブラックボックス)モデリングに使用されるニューラルネットワークの構造を見つけるために設計されたアルゴリズムの開発に関わる課題について述べる。
この研究には、ニューラルネットワークアーキテクチャ検索専用のアルゴリズムの提案が4つ含まれている。
アルゴリズムは進化的アルゴリズムや勾配降下法のようなよく知られた最適化手法に基づいている。
本研究では,上記のアルゴリズムに基づいて,アーキテクチャを最適化した方法で選択したリカレント型ニューラルネットワークについて述べる。
この最適性は、学習された数学的モデルの応答を捉える上で、ニューラルネットワークのサイズと精度とのトレードオフを達成することが理解されている。
最適化の間、独自の特殊進化演算子が提案されている。
この研究は、加圧水型原子炉で発生する高速過程の数学的モデルから生成されたデータに基づく拡張検証研究を含んでいた。
関連論文リスト
- Discovering Physics-Informed Neural Networks Model for Solving Partial Differential Equations through Evolutionary Computation [5.8407437499182935]
本稿では,より高い近似精度と高速収束率を持つPINNモデルの探索を目的とした進化的計算手法を提案する。
実験では、ベイズ最適化、ランダム探索、進化を通じて探索される異なるモデルの性能を比較して、クライン=ゴルドン方程式、バーガー方程式、ラム方程式を解く。
論文 参考訳(メタデータ) (2024-05-18T07:32:02Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Neural Modelling of Dynamic Systems with Time Delays Based on an
Adjusted NEAT Algorithm [0.0]
提案アルゴリズムは、よく知られたNeuroEvolution of Augmenting Topologies (NEAT)アルゴリズムに基づいている。
この研究は、模範システムの数学的モデルから生成されたデータに基づいて、拡張された検証研究を含む。
シミュレーションの結果,時間遅延を伴う動的システムのニューラル(ブラックボックス)モデルの有効性が示された。
論文 参考訳(メタデータ) (2023-09-21T15:04:42Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
畳み込みニューラルネットワーク(CNN)は、ディープラーニングアルゴリズムの代表クラスである。
テキストCNNニューラルネットワークに基づくテキスト分類タスクのためのSA-CNNニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T14:27:34Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
本研究では, 線形単位活性化の補正されたフィードフォワードニューラルネットワークを用いて, 目的関数をモデル化する最適化問題について検討する。
本稿では,1つのニューラルネットワークを最適化するために,既存のBig-M$の定式化をベースとした混合整数線形プログラムを提案する。
論文 参考訳(メタデータ) (2021-12-13T20:50:54Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
複素領域における異なる変動演算子の効果について検討する。
モデルの複雑さと性能に影響を及ぼす変化演算子と、それを構成する異なる部分の質を推定する様々な指標に依存するモデルの両方を特徴付ける。
論文 参考訳(メタデータ) (2021-06-16T17:12:26Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
本稿では,神経進化過程から情報を抽出し,メタモデルを構築するアプローチを提案する。
本稿では, 異なる特徴を有する生成的対向ネットワークの神経進化的探索における最良の構造について検討する。
論文 参考訳(メタデータ) (2021-05-26T20:55:29Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Sampled Training and Node Inheritance for Fast Evolutionary Neural
Architecture Search [22.483917379706725]
進化的ニューラルアーキテクチャサーチ(ENAS)は、進化的アルゴリズムの魅力的なグローバル最適化能力のために注目を集めている。
本稿では,学習データの各ミニバッチに対して,両親がランダムにサンプルを採取し,訓練する,有向非循環グラフに基づく高速ENASのための新しいフレームワークを提案する。
提案アルゴリズムは,26の最先端のピアアルゴリズムと比較して,広く使用されているデータセット上で評価する。
論文 参考訳(メタデータ) (2020-03-07T12:33:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。