論文の概要: Unsupervised correspondence with combined geometric learning and imaging
for radiotherapy applications
- arxiv url: http://arxiv.org/abs/2309.14269v1
- Date: Mon, 25 Sep 2023 16:29:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 14:39:50.770350
- Title: Unsupervised correspondence with combined geometric learning and imaging
for radiotherapy applications
- Title(参考訳): 放射線治療のための幾何学的学習とイメージングを組み合わせた教師なし対応
- Authors: Edward G. A. Henderson, Marcel van Herk, Andrew F. Green, Eliana M.
Vasquez Osorio
- Abstract要約: 本研究の目的は, 放射線治療への応用において, 異なる患者の臓器区分間の対応点を正確に同定するモデルを開発することである。
3次元形状の同時対応と推定のためのモデルとして,頭部と頸部の臓器の分節をCTスキャンから訓練した。
次に、2つのアプローチを用いて画像情報を組み込むため、オリジナルモデルを拡張した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this study was to develop a model to accurately identify
corresponding points between organ segmentations of different patients for
radiotherapy applications. A model for simultaneous correspondence and
interpolation estimation in 3D shapes was trained with head and neck organ
segmentations from planning CT scans. We then extended the original model to
incorporate imaging information using two approaches: 1) extracting features
directly from image patches, and 2) including the mean square error between
patches as part of the loss function. The correspondence and interpolation
performance were evaluated using the geodesic error, chamfer distance and
conformal distortion metrics, as well as distances between anatomical
landmarks. Each of the models produced significantly better correspondences
than the baseline non-rigid registration approach. The original model performed
similarly to the model with direct inclusion of image features. The best
performing model configuration incorporated imaging information as part of the
loss function which produced more anatomically plausible correspondences. We
will use the best performing model to identify corresponding anatomical points
on organs to improve spatial normalisation, an important step in outcome
modelling, or as an initialisation for anatomically informed registrations. All
our code is publicly available at
https://github.com/rrr-uom-projects/Unsup-RT-Corr-Net
- Abstract(参考訳): 本研究の目的は,放射線治療における異なる患者の臓器分節間の対応点を正確に識別するモデルを開発することである。
3次元形状の同時対応と補間推定のためのモデルとして, 頭部と頸部の臓器の分節をCTスキャンを用いて訓練した。
次に、画像情報を2つのアプローチで組み込むために、元のモデルを拡張した。
1)画像パッチから直接特徴を抽出すること、及び
2) 損失関数の一部としてパッチ間の平均二乗誤差を含める。
対応と補間性能は, 測地誤差, チャンファー距離, 等角歪み測定値, 解剖学的ランドマーク間の距離を用いて評価した。
それぞれのモデルでは、ベースラインの非剛性登録手法よりもはるかに優れた対応が得られた。
オリジナルのモデルは、画像特徴を直接包含するモデルと同様に実行された。
最良のモデル構成は、より解剖学的に妥当な対応を生成する損失関数の一部として画像情報を取り込んだ。
我々は,臓器の解剖学的点を同定し,空間的正規化の改善,結果モデリングにおける重要なステップ,あるいは解剖学的に情報を得た登録の初期化を行う。
すべてのコードはhttps://github.com/rrr-uom-projects/Unsup-RT-Corr-Netで公開されています。
関連論文リスト
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - Deep Conditional Shape Models for 3D cardiac image segmentation [1.4042211166197214]
本稿では,Deep Shape Model (DCSM) Conditional をコアコンポーネントとする新しいセグメンテーションアルゴリズムを提案する。
生成した形状を画像に合わせるため、形状モデルを解剖学的ランドマークに条件付けし、ユーザーが自動的に検出または提供することができる。
局所的な改善を伴わずに非造影CTの基準線を上回り, 造影CT, 3DE, 特にハウスドルフ距離を著しく改善した。
論文 参考訳(メタデータ) (2023-10-16T18:38:26Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
対象臓器アノテーションの限られたトレーニングサンプルを用いて, 正確な臓器分類を行うための3次元ショットセグメンテーションフレームワークを提案する。
U-Netのようなネットワークは、サポートデータの2次元スライスとクエリイメージの関係を学習することでセグメンテーションを予測するように設計されている。
異なる臓器のアノテーションを付加した3つの3次元CTデータセットを用いて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2020-11-19T01:44:55Z) - Spherical coordinates transformation pre-processing in Deep Convolution
Neural Networks for brain tumor segmentation in MRI [0.0]
深層畳み込みニューラルネットワーク(DCNN)は、最近非常に有望な結果を示している。
DCNNモデルは、優れたパフォーマンスを達成するために、大きな注釈付きデータセットが必要です。
本研究では,DCNNモデルの精度を向上させるために3次元球面座標変換を仮定した。
論文 参考訳(メタデータ) (2020-08-17T05:11:05Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。