Unsupervised correspondence with combined geometric learning and imaging
for radiotherapy applications
- URL: http://arxiv.org/abs/2309.14269v1
- Date: Mon, 25 Sep 2023 16:29:18 GMT
- Title: Unsupervised correspondence with combined geometric learning and imaging
for radiotherapy applications
- Authors: Edward G. A. Henderson, Marcel van Herk, Andrew F. Green, Eliana M.
Vasquez Osorio
- Abstract summary: The aim of this study was to develop a model to accurately identify corresponding points between organ segmentations of different patients for radiotherapy applications.
A model for simultaneous correspondence and estimation in 3D shapes was trained with head and neck organ segmentations from planning CT scans.
We then extended the original model to incorporate imaging information using two approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this study was to develop a model to accurately identify
corresponding points between organ segmentations of different patients for
radiotherapy applications. A model for simultaneous correspondence and
interpolation estimation in 3D shapes was trained with head and neck organ
segmentations from planning CT scans. We then extended the original model to
incorporate imaging information using two approaches: 1) extracting features
directly from image patches, and 2) including the mean square error between
patches as part of the loss function. The correspondence and interpolation
performance were evaluated using the geodesic error, chamfer distance and
conformal distortion metrics, as well as distances between anatomical
landmarks. Each of the models produced significantly better correspondences
than the baseline non-rigid registration approach. The original model performed
similarly to the model with direct inclusion of image features. The best
performing model configuration incorporated imaging information as part of the
loss function which produced more anatomically plausible correspondences. We
will use the best performing model to identify corresponding anatomical points
on organs to improve spatial normalisation, an important step in outcome
modelling, or as an initialisation for anatomically informed registrations. All
our code is publicly available at
https://github.com/rrr-uom-projects/Unsup-RT-Corr-Net
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
We propose ProMISe, a prompt-driven 3D medical image segmentation model using only a single point prompt.
We evaluate our model on two public datasets for colon and pancreas tumor segmentations.
arXiv Detail & Related papers (2023-10-30T16:49:03Z) - Deep Conditional Shape Models for 3D cardiac image segmentation [1.4042211166197214]
We introduce a novel segmentation algorithm that uses Deep Shape models (DCSMs) Conditional as a core component.
To fit the generated shape to the image, the shape model is conditioned on anatomic landmarks that can be automatically detected or provided by the user.
We demonstrate that the automatic DCSM outperforms the baseline for non-contrasted CT without the local refinement, and with the refinement for contrasted CT and 3DE, especially with significant improvement in the Hausdorff distance.
arXiv Detail & Related papers (2023-10-16T18:38:26Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
We propose a 3D few shot segmentation framework for accurate organ segmentation using limited training samples of the target organ annotation.
A U-Net like network is designed to predict segmentation by learning the relationship between 2D slices of support data and a query image.
We evaluate our proposed model using three 3D CT datasets with annotations of different organs.
arXiv Detail & Related papers (2020-11-19T01:44:55Z) - Spherical coordinates transformation pre-processing in Deep Convolution
Neural Networks for brain tumor segmentation in MRI [0.0]
Deep Convolutional Neural Networks (DCNN) have recently shown very promising results.
DCNN models need large annotated datasets to achieve good performance.
In this work, a 3D Spherical coordinates transform has been hypothesized to improve DCNN models' accuracy.
arXiv Detail & Related papers (2020-08-17T05:11:05Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.