DeepMesh: Mesh-based Cardiac Motion Tracking using Deep Learning
- URL: http://arxiv.org/abs/2309.14306v1
- Date: Mon, 25 Sep 2023 17:24:18 GMT
- Title: DeepMesh: Mesh-based Cardiac Motion Tracking using Deep Learning
- Authors: Qingjie Meng and Wenjia Bai and Declan P O'Regan and and Daniel
Rueckert
- Abstract summary: 3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and the diagnosis of cardiovascular diseases.
In this work, we model the heart as a 3D mesh consisting of epi- and endocardial surfaces.
We propose a novel learning framework, DeepMesh, which propagates a template heart mesh to a subject space and estimates the 3D motion of the heart mesh from CMR images for individual subjects.
- Score: 13.289561121562057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D motion estimation from cine cardiac magnetic resonance (CMR) images is
important for the assessment of cardiac function and the diagnosis of
cardiovascular diseases. Current state-of-the art methods focus on estimating
dense pixel-/voxel-wise motion fields in image space, which ignores the fact
that motion estimation is only relevant and useful within the anatomical
objects of interest, e.g., the heart. In this work, we model the heart as a 3D
mesh consisting of epi- and endocardial surfaces. We propose a novel learning
framework, DeepMesh, which propagates a template heart mesh to a subject space
and estimates the 3D motion of the heart mesh from CMR images for individual
subjects. In DeepMesh, the heart mesh of the end-diastolic frame of an
individual subject is first reconstructed from the template mesh. Mesh-based 3D
motion fields with respect to the end-diastolic frame are then estimated from
2D short- and long-axis CMR images. By developing a differentiable
mesh-to-image rasterizer, DeepMesh is able to leverage 2D shape information
from multiple anatomical views for 3D mesh reconstruction and mesh motion
estimation. The proposed method estimates vertex-wise displacement and thus
maintains vertex correspondences between time frames, which is important for
the quantitative assessment of cardiac function across different subjects and
populations. We evaluate DeepMesh on CMR images acquired from the UK Biobank.
We focus on 3D motion estimation of the left ventricle in this work.
Experimental results show that the proposed method quantitatively and
qualitatively outperforms other image-based and mesh-based cardiac motion
tracking methods.
Related papers
- Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
Mesh reconstruction of the cardiac anatomy from medical images is useful for shape and motion measurements and biophysics simulations.
Traditional voxel-based approaches rely on pre- and post-processing that compromises image fidelity.
We propose a novel explicit differentiable voxelization and slicing (DVS) algorithm that allows gradient backpropagation to a mesh from its slices.
arXiv Detail & Related papers (2024-09-03T17:19:31Z) - CardioSpectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights [6.415915756409993]
Conventional neural networks have difficulty predicting subtle tangential movements.
We present a comprehensive approach to address this problem.
Our 3D deep learning architecture, based on the ARFlow model, is optimized to handle complex 3D motion analysis tasks.
arXiv Detail & Related papers (2024-07-04T09:57:44Z) - MinD-3D: Reconstruct High-quality 3D objects in Human Brain [50.534007259536715]
Recon3DMind is an innovative task aimed at reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals.
We present the fMRI-Shape dataset, which includes data from 14 participants and features 360-degree videos of 3D objects.
We propose MinD-3D, a novel and effective three-stage framework specifically designed to decode the brain's 3D visual information from fMRI signals.
arXiv Detail & Related papers (2023-12-12T18:21:36Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh
Reconstruction [66.10717041384625]
Zolly is the first 3DHMR method focusing on perspective-distorted images.
We propose a new camera model and a novel 2D representation, termed distortion image, which describes the 2D dense distortion scale of the human body.
We extend two real-world datasets tailored for this task, all containing perspective-distorted human images.
arXiv Detail & Related papers (2023-03-24T04:22:41Z) - Mesh-based 3D Motion Tracking in Cardiac MRI using Deep Learning [11.177851736773823]
3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and diagnosis of cardiovascular diseases.
Most of the previous methods focus on estimating pixel-/voxel-wise motion fields in the full image space.
In this work, we model the heart as a 3D geometric mesh and propose a novel deep learning-based method that can estimate 3D motion of the heart mesh from 2D short-axis CMR images.
arXiv Detail & Related papers (2022-09-05T15:10:27Z) - MulViMotion: Shape-aware 3D Myocardial Motion Tracking from Multi-View
Cardiac MRI [11.685829837689404]
We propose a novel multi-view motion estimation network (MulViMotion) to learn a consistent 3D motion field of the heart.
We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium.
arXiv Detail & Related papers (2022-07-29T18:29:52Z) - KAMA: 3D Keypoint Aware Body Mesh Articulation [79.04090630502782]
We propose an analytical solution to articulate a parametric body model, SMPL, via a set of straightforward geometric transformations.
Our approach offers significantly better alignment to image content when compared to state-of-the-art approaches.
Results on the challenging 3DPW and Human3.6M demonstrate that our approach yields state-of-the-art body mesh fittings.
arXiv Detail & Related papers (2021-04-27T23:01:03Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - PC-U Net: Learning to Jointly Reconstruct and Segment the Cardiac Walls
in 3D from CT Data [18.941064150226236]
We propose a PC-U net that jointly reconstructs the point cloud of the LV MYO wall directly from volumes of 2D CT slices.
The proposed joint learning framework of our PC-U net is beneficial for automatic cardiac image analysis tasks.
arXiv Detail & Related papers (2020-08-18T23:37:05Z) - HEMlets PoSh: Learning Part-Centric Heatmap Triplets for 3D Human Pose
and Shape Estimation [60.35776484235304]
This work attempts to address the uncertainty of lifting the detected 2D joints to the 3D space by introducing an intermediate state-Part-Centric Heatmap Triplets (HEMlets)
The HEMlets utilize three joint-heatmaps to represent the relative depth information of the end-joints for each skeletal body part.
A Convolutional Network (ConvNet) is first trained to predict HEMlets from the input image, followed by a volumetric joint-heatmap regression.
arXiv Detail & Related papers (2020-03-10T04:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.