CardioSpectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights
- URL: http://arxiv.org/abs/2407.03794v2
- Date: Thu, 07 Nov 2024 15:56:00 GMT
- Title: CardioSpectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights
- Authors: Shahar Zuler, Shai Tejman-Yarden, Dan Raviv,
- Abstract summary: Conventional neural networks have difficulty predicting subtle tangential movements.
We present a comprehensive approach to address this problem.
Our 3D deep learning architecture, based on the ARFlow model, is optimized to handle complex 3D motion analysis tasks.
- Score: 6.415915756409993
- License:
- Abstract: The ability to map left ventricle (LV) myocardial motion using computed tomography angiography (CTA) is essential to diagnosing cardiovascular conditions and guiding interventional procedures. Due to their inherent locality, conventional neural networks typically have difficulty predicting subtle tangential movements, which considerably lessens the level of precision at which myocardium three-dimensional (3D) mapping can be performed. Using 3D optical flow techniques and Functional Maps (FMs), we present a comprehensive approach to address this problem. FMs are known for their capacity to capture global geometric features, thus providing a fuller understanding of 3D geometry. As an alternative to traditional segmentation-based priors, we employ surface-based two-dimensional (2D) constraints derived from spectral correspondence methods. Our 3D deep learning architecture, based on the ARFlow model, is optimized to handle complex 3D motion analysis tasks. By incorporating FMs, we can capture the subtle tangential movements of the myocardium surface precisely, hence significantly improving the accuracy of 3D mapping of the myocardium. The experimental results confirm the effectiveness of this method in enhancing myocardium motion analysis. This approach can contribute to improving cardiovascular diagnosis and treatment. Our code and additional resources are available at: https://shaharzuler.github.io/CardioSpectrumPage
Related papers
- R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - Continuous 3D Myocardial Motion Tracking via Echocardiography [30.19879953016694]
Myocardial motion tracking is an essential clinical tool in the prevention and detection of cardiovascular diseases.
Current techniques suffer from incomplete and inaccurate motion estimation of the myocardium in both spatial and temporal dimensions.
This paper introduces the Neural Cardiac Motion Field (NeuralCMF) to model the 3D structure and the comprehensive 6D forward/backward motion of the heart.
arXiv Detail & Related papers (2023-10-04T13:11:20Z) - DeepMesh: Mesh-based Cardiac Motion Tracking using Deep Learning [13.289561121562057]
3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and the diagnosis of cardiovascular diseases.
In this work, we model the heart as a 3D mesh consisting of epi- and endocardial surfaces.
We propose a novel learning framework, DeepMesh, which propagates a template heart mesh to a subject space and estimates the 3D motion of the heart mesh from CMR images for individual subjects.
arXiv Detail & Related papers (2023-09-25T17:24:18Z) - Mesh-based 3D Motion Tracking in Cardiac MRI using Deep Learning [11.177851736773823]
3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and diagnosis of cardiovascular diseases.
Most of the previous methods focus on estimating pixel-/voxel-wise motion fields in the full image space.
In this work, we model the heart as a 3D geometric mesh and propose a novel deep learning-based method that can estimate 3D motion of the heart mesh from 2D short-axis CMR images.
arXiv Detail & Related papers (2022-09-05T15:10:27Z) - MulViMotion: Shape-aware 3D Myocardial Motion Tracking from Multi-View
Cardiac MRI [11.685829837689404]
We propose a novel multi-view motion estimation network (MulViMotion) to learn a consistent 3D motion field of the heart.
We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium.
arXiv Detail & Related papers (2022-07-29T18:29:52Z) - DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction
via A Structure-Specific Generative Method [12.26150675728958]
We propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes.
Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures.
In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures.
arXiv Detail & Related papers (2022-06-14T20:46:11Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z) - Cephalometric Landmark Regression with Convolutional Neural Networks on
3D Computed Tomography Data [68.8204255655161]
Cephalometric analysis performed on lateral radiographs doesn't fully exploit the structure of 3D objects due to projection onto the lateral plane.
We present a series of experiments with state of the art 3D convolutional neural network (CNN) based methods for keypoint regression.
For the first time, we extensively evaluate the described methods and demonstrate their effectiveness in the estimation of Frankfort Horizontal and cephalometric points locations.
arXiv Detail & Related papers (2020-07-20T12:45:38Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2020-04-26T05:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.