A Unitary Weights Based One-Iteration Quantum Perceptron Algorithm for
Non-Ideal Training Sets
- URL: http://arxiv.org/abs/2309.14366v1
- Date: Sat, 23 Sep 2023 15:24:41 GMT
- Title: A Unitary Weights Based One-Iteration Quantum Perceptron Algorithm for
Non-Ideal Training Sets
- Authors: Wenjie Liu, Peipei Gao, Yuxiang Wang, Wenbin Yu, and Maojun Zhang
- Abstract summary: A novel efficient quantum perceptron algorithm based on unitary weights is proposed.
The example validation of quantum gates H, S, T, CNOT, Toffoli, Fredkin shows that our algorithm can accurately implement arbitrary quantum gates within one iteration.
- Score: 15.53642141764581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to solve the problem of non-ideal training sets (i.e., the
less-complete or over-complete sets) and implement one-iteration learning, a
novel efficient quantum perceptron algorithm based on unitary weights is
proposed, where the singular value decomposition of the total weight matrix
from the training set is calculated to make the weight matrix to be unitary.
The example validation of quantum gates {H, S, T, CNOT, Toffoli, Fredkin} shows
that our algorithm can accurately implement arbitrary quantum gates within one
iteration. The performance comparison between our algorithm and other quantum
perceptron algorithms demonstrates the advantages of our algorithm in terms of
applicability, accuracy, and availability. For further validating the
applicability of our algorithm, a quantum composite gate which consists of
several basic quantum gates is also illustrated.
Related papers
- Hybrid quantum-classical approach for combinatorial problems at hadron colliders [7.2572969510173655]
We explore the potential of quantum algorithms to resolve the problems in particle physics experiments.
We consider top quark pair production in the fully hadronic channel at the Large Hadron Collider.
We show that the efficiency for selecting the correct pairing is greatly improved by utilizing quantum algorithms.
arXiv Detail & Related papers (2024-10-29T18:00:07Z) - The Algorithm for Solving Quantum Linear Systems of Equations With Coherent Superposition and Its Extended Applications [8.8400072344375]
We propose two quantum algorithms for solving quantum linear systems of equations with coherent superposition.
The two quantum algorithms can both compute the rank and general solution by one measurement.
Our analysis indicates that the proposed algorithms are mainly suitable for conducting attacks against lightweight symmetric ciphers.
arXiv Detail & Related papers (2024-05-11T03:03:14Z) - Tailoring Fault-Tolerance to Quantum Algorithms [3.836669717540222]
We develop a solve-and-stitch algorithm to synthesize physical realizations of Clifford Trotter circuits.
We achieve fault-tolerance for these circuits using flag gadgets, which add minimal overhead.
arXiv Detail & Related papers (2024-04-18T07:15:15Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Topological Quantum Compiling with Reinforcement Learning [7.741584909637626]
We introduce an efficient algorithm that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set.
Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.
arXiv Detail & Related papers (2020-04-09T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.