Hybrid quantum-classical approach for combinatorial problems at hadron colliders
- URL: http://arxiv.org/abs/2410.22417v1
- Date: Tue, 29 Oct 2024 18:00:07 GMT
- Title: Hybrid quantum-classical approach for combinatorial problems at hadron colliders
- Authors: Jacob L. Scott, Zhongtian Dong, Taejoon Kim, Kyoungchul Kong, Myeonghun Park,
- Abstract summary: We explore the potential of quantum algorithms to resolve the problems in particle physics experiments.
We consider top quark pair production in the fully hadronic channel at the Large Hadron Collider.
We show that the efficiency for selecting the correct pairing is greatly improved by utilizing quantum algorithms.
- Score: 7.2572969510173655
- License:
- Abstract: In recent years, quantum computing has drawn significant interest within the field of high-energy physics. We explore the potential of quantum algorithms to resolve the combinatorial problems in particle physics experiments. As a concrete example, we consider top quark pair production in the fully hadronic channel at the Large Hadron Collider. We investigate the performance of various quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) and a feedback-based algorithm (FALQON). We demonstrate that the efficiency for selecting the correct pairing is greatly improved by utilizing quantum algorithms over conventional kinematic methods. Furthermore, we observe that gate-based universal quantum algorithms perform on par with machine learning techniques and either surpass or match the effectiveness of quantum annealers. Our findings reveal that quantum algorithms not only provide a substantial increase in matching efficiency but also exhibit scalability and adaptability, making them suitable for a variety of high-energy physics applications. Moreover, quantum algorithms eliminate the extensive training processes needed by classical machine learning methods, enabling real-time adjustments based on individual event data.
Related papers
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum-Enhanced Greedy Combinatorial Optimization Solver [12.454028945013924]
We introduce an iterative quantum optimization algorithm to solve optimization problems.
We implement the quantum algorithm on a programmable superconducting quantum system using up to 72 qubits.
We find the quantum algorithm systematically outperforms its classical greedy counterpart, signaling a quantum enhancement.
arXiv Detail & Related papers (2023-03-09T18:59:37Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
This tutorial provides a mathematical description of the class of Variational Quantum Algorithms.
We introduce precisely the key aspects of these hybrid algorithms on the quantum side and the classical side.
We devote a particular attention to QAOA, detailing the quantum circuits involved in that algorithm, as well as the properties satisfied by its possible guiding functions.
arXiv Detail & Related papers (2022-12-22T14:27:52Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum Phase Recognition via Quantum Kernel Methods [6.3286116342955845]
We explore the power of quantum learning algorithms in solving an important class of Quantum Phase Recognition problems.
We numerically benchmark our algorithm for a variety of problems, including recognizing symmetry-protected topological phases and symmetry-broken phases.
Our results highlight the capability of quantum machine learning in predicting such quantum phase transitions in many-particle systems.
arXiv Detail & Related papers (2021-11-15T06:17:52Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, quantum resources are limited.
We present a resource-efficient quantum algorithm for bosonic ground and excited state computations.
arXiv Detail & Related papers (2021-02-23T19:00:05Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.