Towards using Cough for Respiratory Disease Diagnosis by leveraging
Artificial Intelligence: A Survey
- URL: http://arxiv.org/abs/2309.14383v1
- Date: Sun, 24 Sep 2023 19:03:46 GMT
- Title: Towards using Cough for Respiratory Disease Diagnosis by leveraging
Artificial Intelligence: A Survey
- Authors: Aneeqa Ijaz, Muhammad Nabeel, Usama Masood, Tahir Mahmood, Mydah Sajid
Hashmi, Iryna Posokhova, Ali Rizwan, and Ali Imran
- Abstract summary: Cough acoustics contain multitudes of vital information about pathomorphological alterations in the respiratory system.
Recent application of Artificial Intelligence (AI) and advances of ubiquitous computing for respiratory disease prediction has created an auspicious trend.
There is an expeditiously emerging trend of Machine learning (ML) and Deep Learning (DL)-based diagnostic algorithms exploiting cough signatures.
- Score: 3.0911149532847375
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cough acoustics contain multitudes of vital information about
pathomorphological alterations in the respiratory system. Reliable and accurate
detection of cough events by investigating the underlying cough latent features
and disease diagnosis can play an indispensable role in revitalizing the
healthcare practices. The recent application of Artificial Intelligence (AI)
and advances of ubiquitous computing for respiratory disease prediction has
created an auspicious trend and myriad of future possibilities in the medical
domain. In particular, there is an expeditiously emerging trend of Machine
learning (ML) and Deep Learning (DL)-based diagnostic algorithms exploiting
cough signatures. The enormous body of literature on cough-based AI algorithms
demonstrate that these models can play a significant role for detecting the
onset of a specific respiratory disease. However, it is pertinent to collect
the information from all relevant studies in an exhaustive manner for the
medical experts and AI scientists to analyze the decisive role of AI/ML. This
survey offers a comprehensive overview of the cough data-driven ML/DL detection
and preliminary diagnosis frameworks, along with a detailed list of significant
features. We investigate the mechanism that causes cough and the latent cough
features of the respiratory modalities. We also analyze the customized cough
monitoring application, and their AI-powered recognition algorithms. Challenges
and prospective future research directions to develop practical, robust, and
ubiquitous solutions are also discussed in detail.
Related papers
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
A review [2.2268038840298714]
We review the state-of-the-art machine learning studies that adopted the fusion of biomedical knowledge and data.
We provide an overview of diverse forms of knowledge representation and current strategies of knowledge integration into machine learning pipelines.
arXiv Detail & Related papers (2024-01-12T07:01:36Z) - Respiratory Disease Classification and Biometric Analysis Using Biosignals from Digital Stethoscopes [3.2458203725405976]
This work presents a novel approach leveraging digital stethoscope technology for automatic respiratory disease classification and biometric analysis.
By leveraging one of the largest publicly available medical database of respiratory sounds, we train machine learning models to classify various respiratory health conditions.
Our approach achieves high accuracy in both binary classification (89% balanced accuracy for healthy vs. diseased) and multi-class classification (72% balanced accuracy for specific diseases like pneumonia and COPD)
arXiv Detail & Related papers (2023-09-12T23:54:00Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Do it Like the Doctor: How We Can Design a Model That Uses Domain
Knowledge to Diagnose Pneumothorax [2.2141630212818306]
We conducted two think-aloud studies with doctors trained in the interpretation of lung ultrasound diagnosis to extract relevant domain knowledge for the condition Pneumothorax.
We employed knowledge engineering concepts to make recommendations for an AI model design to automatically diagnose Pneumothorax.
arXiv Detail & Related papers (2022-05-24T15:42:43Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Can Machine Learning Be Used to Recognize and Diagnose Coughs? [3.2265234594751155]
We present a low complexity, automated recognition and diagnostic tool for screening respiratory infections.
We use Convolutional Neural Networks (CNNs) to detect cough within environment audio and diagnose three potential illnesses.
Both proposed detection and diagnosis models achieve an accuracy of over 89%, while also remaining computationally efficient.
arXiv Detail & Related papers (2020-04-01T20:14:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.