Respiratory Disease Classification and Biometric Analysis Using Biosignals from Digital Stethoscopes
- URL: http://arxiv.org/abs/2309.07183v2
- Date: Sat, 16 Mar 2024 19:00:10 GMT
- Title: Respiratory Disease Classification and Biometric Analysis Using Biosignals from Digital Stethoscopes
- Authors: Constantino Álvarez Casado, Manuel Lage Cañellas, Matteo Pedone, Xiaoting Wu, Le Nguyen, Miguel Bordallo López,
- Abstract summary: This work presents a novel approach leveraging digital stethoscope technology for automatic respiratory disease classification and biometric analysis.
By leveraging one of the largest publicly available medical database of respiratory sounds, we train machine learning models to classify various respiratory health conditions.
Our approach achieves high accuracy in both binary classification (89% balanced accuracy for healthy vs. diseased) and multi-class classification (72% balanced accuracy for specific diseases like pneumonia and COPD)
- Score: 3.2458203725405976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Respiratory diseases remain a leading cause of mortality worldwide, highlighting the need for faster and more accurate diagnostic tools. This work presents a novel approach leveraging digital stethoscope technology for automatic respiratory disease classification and biometric analysis. Our approach has the potential to significantly enhance traditional auscultation practices. By leveraging one of the largest publicly available medical database of respiratory sounds, we train machine learning models to classify various respiratory health conditions. Our method differs from conventional methods by using Empirical Mode Decomposition (EMD) and spectral analysis techniques to isolate clinically relevant biosignals embedded within acoustic data captured by digital stethoscopes. This approach focuses on information closely tied to cardiovascular and respiratory patterns within the acoustic data. Spectral analysis and filtering techniques isolate Intrinsic Mode Functions (IMFs) strongly correlated with these physiological phenomena. These biosignals undergo a comprehensive feature extraction process for predictive modeling. These features then serve as input to train several machine learning models for both classification and regression tasks. Our approach achieves high accuracy in both binary classification (89% balanced accuracy for healthy vs. diseased) and multi-class classification (72% balanced accuracy for specific diseases like pneumonia and COPD). For the first time, this work introduces regression models capable of estimating age and body mass index (BMI) based solely on acoustic data, as well as a model for sex classification. Our findings underscore the potential of intelligent digital stethoscopes to significantly enhance assistive and remote diagnostic capabilities, contributing to advancements in digital health, telehealth, and remote patient monitoring.
Related papers
- Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers [14.144599890583308]
We propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set.
Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
arXiv Detail & Related papers (2024-08-28T09:40:40Z) - Real-Time Magnetic Tracking and Diagnosis of COVID-19 via Machine
Learning [2.737411991771932]
The COVID-19 pandemic underscored the importance of reliable, noninvasive diagnostic tools for robust public health interventions.
In this work, we fused magnetic respiratory sensing technology (MRST) with machine learning (ML) to create a diagnostic platform for real-time tracking and diagnosis of COVID-19 and other respiratory diseases.
arXiv Detail & Related papers (2023-11-01T13:57:33Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
We introduce a novel and effective Patch-Mix Contrastive Learning to distinguish the mixed representations in the latent space.
Our method achieves state-of-the-art performance on the ICBHI dataset, outperforming the prior leading score by an improvement of 4.08%.
arXiv Detail & Related papers (2023-05-23T13:04:07Z) - Transfer Learning Based Diagnosis and Analysis of Lung Sound Aberrations [0.35232085374661276]
This work attempts to develop a non-invasive technique for identifying respiratory sounds acquired by a stethoscope and voice recording software.
A visual representation of each audio sample is constructed, allowing resource identification for classification using methods like those used to effectively describe visuals.
Respiratory Sound Database obtained cutting-edge results, including accuracy of 95%, precision of 88%, recall score of 86%, and F1 score of 81%.
arXiv Detail & Related papers (2023-03-15T04:46:57Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Frequency comb and machine learning-based breath analysis for COVID-19
classification [0.6113111451963646]
We present a robust analytical method that simultaneously measures tens of thousands of spectral features in each breath sample.
Using 170 individual samples at the University of Colorado, we report a cross-validated area under the Receiver-Operating-Characteristics curve of 0.849(4).
This method detected a significant difference between male and female breath as well as other variables such as smoking and abdominal pain.
arXiv Detail & Related papers (2022-02-04T05:58:52Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.