論文の概要: Adapting Double Q-Learning for Continuous Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2309.14471v1
- Date: Mon, 25 Sep 2023 19:09:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 16:04:19.717505
- Title: Adapting Double Q-Learning for Continuous Reinforcement Learning
- Title(参考訳): 連続強化学習へのダブルq学習の適用
- Authors: Arsenii Kuznetsov
- Abstract要約: 本稿では,Double Q-Learningと同様のバイアス補正手法を提案する。
提案手法は,少数の MuJoCo 環境において,SOTA 近傍で有望な結果を示す。
- 参考スコア(独自算出の注目度): 0.65268245109828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Majority of off-policy reinforcement learning algorithms use overestimation
bias control techniques. Most of these techniques rooted in heuristics,
primarily addressing the consequences of overestimation rather than its
fundamental origins. In this work we present a novel approach to the bias
correction, similar in spirit to Double Q-Learning. We propose using a policy
in form of a mixture with two components. Each policy component is maximized
and assessed by separate networks, which removes any basis for the
overestimation bias. Our approach shows promising near-SOTA results on a small
set of MuJoCo environments.
- Abstract(参考訳): 法外強化学習アルゴリズムの多くは過大評価バイアス制御技術を使用している。
これらの技術のほとんどはヒューリスティックスに根ざし、その基本的な起源よりも過大評価の結果に対処した。
本研究は、二重Q-ラーニングと同様のバイアス補正に対する新しいアプローチを提案する。
本稿では,2つの成分を混合したポリシを提案する。
各ポリシーコンポーネントは、個別のネットワークによって最大化・評価され、過大評価バイアスのいかなる根拠も排除される。
提案手法は,少数の MuJoCo 環境上でのSOTA 近傍の結果を示す。
関連論文リスト
- Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
我々は,MARLHF(Multi-Agent Reinforcement Learning from Human Feedback)について検討し,理論的基礎と実証的検証の両方について検討した。
我々は,このタスクを,一般ゲームにおける嗜好のみのオフラインデータセットからナッシュ均衡を識別するものとして定義する。
本研究は,MARLHFの多面的アプローチを基礎として,効果的な嗜好に基づくマルチエージェントシステムの実現を目指している。
論文 参考訳(メタデータ) (2024-09-01T13:14:41Z) - BECLR: Batch Enhanced Contrastive Few-Shot Learning [1.450405446885067]
教師なしの少数ショット学習は、トレーニング時にアノテーションへの依存を捨てることで、このギャップを埋めようとしている。
本稿では,高度に分離可能な潜在表現空間を促進するために,新しい動的クラスタ mEmory (DyCE) モジュールを提案する。
そして、数ショットの推論段階でサンプルバイアスの問題に取り組みます。
論文 参考訳(メタデータ) (2024-02-04T10:52:43Z) - Projected Off-Policy Q-Learning (POP-QL) for Stabilizing Offline
Reinforcement Learning [57.83919813698673]
Projected Off-Policy Q-Learning (POP-QL) は、政治外のサンプルを同時に重み付け、分散を防止し、価値近似誤差を減らすためにポリシーを制約する新しいアクタ批判アルゴリズムである。
我々の実験では、POP-QLは標準ベンチマーク上での競合性能を示すだけでなく、データ収集ポリシーがかなり最適化されていないタスクにおいて競合するメソッドよりも優れています。
論文 参考訳(メタデータ) (2023-11-25T00:30:58Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
本稿では、オフラインシーケンスモデリングとオフライン強化学習をダブルポリシー推定と組み合わせたRLアルゴリズムDPEを提案する。
D4RLベンチマークを用いて,OpenAI Gymの複数のタスクで本手法を検証した。
論文 参考訳(メタデータ) (2023-08-28T20:46:07Z) - Expeditious Saliency-guided Mix-up through Random Gradient Thresholding [89.59134648542042]
混合学習アプローチはディープニューラルネットワークの一般化能力向上に有効であることが証明されている。
本稿では,両経路の分岐点に位置する新しい手法を提案する。
我々はR-Mixという手法を「Random Mix-up」という概念にちなむ。
より良い意思決定プロトコルが存在するかどうかという問題に対処するために、我々は、ミックスアップポリシーを決定する強化学習エージェントを訓練する。
論文 参考訳(メタデータ) (2022-12-09T14:29:57Z) - On the Estimation Bias in Double Q-Learning [20.856485777692594]
二重Q学習は完全にバイアスがなく、過小評価バイアスに悩まされている。
そのような過小評価バイアスは、近似されたベルマン作用素の下で複数の最適でない不動点をもたらす可能性があることを示す。
ダブルQ-ラーニングにおける過小評価バイアスに対する部分修正として,単純だが効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-29T13:41:24Z) - Parameter-Free Deterministic Reduction of the Estimation Bias in
Continuous Control [0.0]
パラメータフリーで新しいQ-ラーニングバリアントを導入し、この過小評価バイアスを連続制御に還元する。
我々は、MuJoCoとBox2Dの連続制御タスクのセットで改善性能をテストする。
論文 参考訳(メタデータ) (2021-09-24T07:41:07Z) - Estimation Error Correction in Deep Reinforcement Learning for
Deterministic Actor-Critic Methods [0.0]
価値に基づく深層強化学習法では、値関数の近似は過大評価バイアスを誘発し、準最適ポリシーをもたらす。
過大評価バイアスを克服することを目的とした深いアクター批判的手法では,エージェントが受信した強化信号に高いばらつきがある場合,顕著な過大評価バイアスが発生することを示す。
過小評価を最小限に抑えるため,パラメータフリーで新しいQ-ラーニングモデルを提案する。
論文 参考訳(メタデータ) (2021-09-22T13:49:35Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
本稿では、値に基づく強化学習手法において、よく知られた過大評価問題を緩和することを目的とした、新しいクロスQ-ラーニングアルゴリズムを提案する。
本アルゴリズムは,並列モデルの集合を維持し,ランダムに選択されたネットワークに基づいてQ値を算出することによって,二重Q-ラーニングに基づいて構築する。
論文 参考訳(メタデータ) (2020-09-29T04:58:17Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。