ADESS: A Proof-of-Work Protocol to Deter Double-Spend Attacks
- URL: http://arxiv.org/abs/2309.14551v1
- Date: Mon, 25 Sep 2023 21:50:23 GMT
- Title: ADESS: A Proof-of-Work Protocol to Deter Double-Spend Attacks
- Authors: Daniel Aronoff, Isaac Ardis,
- Abstract summary: A principal vulnerability of a proof-of-work ("PoW") blockchain is that an attacker can re-write the history of transactions.
We propose a modification to PoW protocols, called ADESS, that contains two novel features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A principal vulnerability of a proof-of-work ("PoW") blockchain is that an attacker can re-write the history of transactions by forking a previously published block and build a new chain segment containing a different sequence of transactions. If the attacker's chain has the most cumulative mining puzzle difficulty, nodes will recognize it as canonical. We propose a modification to PoW protocols, called ADESS, that contains two novel features. The first modification enables a node to identify the attacker chain by comparing the temporal sequence of blocks on competing chains. The second modification penalizes the attacker by requiring it to apply exponentially increasing hashrate in order to make its chain canonical. We demonstrate two things; (i) the expected cost of carrying out a double-spend attack is weakly higher under ADESS compared to the current PoW protocols and (ii) for any value of transaction, there is a penalty setting in ADESS that renders the expected profit of a double-spend attack negative.
Related papers
- BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Aegis: A Decentralized Expansion Blockchain [9.499962065972483]
We present Aegis, an expansion chain based on primary-chain stake, assuming a bounded primary-chain write time.
Aegis uses references from Aegis blocks to primary blocks to define committees, checkpoints on the primary chain to perpetuate decisions, and resets on the primary chain to establish a new committee if the previous one becomes obsolete.
arXiv Detail & Related papers (2024-06-09T19:53:48Z) - Advancing Generalized Transfer Attack with Initialization Derived Bilevel Optimization and Dynamic Sequence Truncation [49.480978190805125]
Transfer attacks generate significant interest for black-box applications.
Existing works essentially directly optimize the single-level objective w.r.t. surrogate model.
We propose a bilevel optimization paradigm, which explicitly reforms the nested relationship between the Upper-Level (UL) pseudo-victim attacker and the Lower-Level (LL) surrogate attacker.
arXiv Detail & Related papers (2024-06-04T07:45:27Z) - Tie-Breaking Rule Based on Partial Proof of Work in a Blockchain [2.9281463284266973]
We propose another countermeasure that can be easily applied to existing proof of work blockchain systems.
By using the characteristic of partial proof of work, the proposed method enables miners to choose the last-generated block in a chain tie.
Only weak synchrony, which is already met by existing systems such as Bitcoin, is required for effective functioning.
arXiv Detail & Related papers (2024-03-22T08:24:12Z) - Model Supply Chain Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability [61.549465258257115]
We propose a novel and severer backdoor attack, TransTroj, which enables the backdoors embedded in PTMs to efficiently transfer in the model supply chain.
Experimental results show that our method significantly outperforms SOTA task-agnostic backdoor attacks.
arXiv Detail & Related papers (2024-01-29T04:35:48Z) - Parallel Proof-of-Work with DAG-Style Voting and Targeted Reward Discounting [0.0]
We present parallel proof-of-work with DAG-style voting, a novel proof-of-work cryptocurrency protocol.
It provides better consistency guarantees, higher transaction throughput, lower transaction confirmation latency, and higher resilience against incentive attacks.
An interesting by-product of our analysis is that parallel proof-of-work without reward discounting is less resilient to incentive attacks than Bitcoin in some realistic network scenarios.
arXiv Detail & Related papers (2023-12-05T20:14:33Z) - A Two-Layer Blockchain Sharding Protocol Leveraging Safety and Liveness for Enhanced Performance [5.344231997803284]
Existing protocols overlook diverse adversarial attacks, limiting transaction throughput.
This paper presents Reticulum, a groundbreaking sharding protocol addressing this issue.
It comprises "control" and "process" shards in two layers.
arXiv Detail & Related papers (2023-10-17T16:15:28Z) - Refined Bitcoin Security-Latency Under Network Delay [35.16231062731263]
We study how secure a block is after it becomes $k$-deep in the chain.
We analyze the race between adversarial and honest chains in three different phases.
We find the probability distribution of the growth of the adversarial chains under models similar to those in [Guo, Ren; AFT 2022] when a target block becomes $k$-deep in the chain.
arXiv Detail & Related papers (2022-12-02T18:54:30Z) - WR-ONE2SET: Towards Well-Calibrated Keyphrase Generation [57.11538133231843]
Keyphrase generation aims to automatically generate short phrases summarizing an input document.
The recently emerged ONE2SET paradigm generates keyphrases as a set and has achieved competitive performance.
We propose WR-ONE2SET which extends ONE2SET with an adaptive instance-level cost Weighting strategy and a target Re-assignment mechanism.
arXiv Detail & Related papers (2022-11-13T09:56:24Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.