論文の概要: Image Denoising via Style Disentanglement
- arxiv url: http://arxiv.org/abs/2309.14755v1
- Date: Tue, 26 Sep 2023 08:29:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 14:35:34.421574
- Title: Image Denoising via Style Disentanglement
- Title(参考訳): スタイルディスタングルによる画像のデノーミング
- Authors: Jingwei Niu, Jun Cheng, and Shan Tan
- Abstract要約: そこで本稿では,鮮明な復調機構と優れた性能を兼ね備えた画像復調手法を提案する。
我々はノイズをイメージスタイルの一種とみなし、クリーンな画像から派生したノイズフリーなスタイルを取り入れて除去する。
合成ノイズ除去と実世界の画像デノゲーションデータセットについて広範な実験を行った。
- 参考スコア(独自算出の注目度): 9.38519460509602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image denoising is a fundamental task in low-level computer vision. While
recent deep learning-based image denoising methods have achieved impressive
performance, they are black-box models and the underlying denoising principle
remains unclear. In this paper, we propose a novel approach to image denoising
that offers both clear denoising mechanism and good performance. We view noise
as a type of image style and remove it by incorporating noise-free styles
derived from clean images. To achieve this, we design novel losses and network
modules to extract noisy styles from noisy images and noise-free styles from
clean images. The noise-free style induces low-response activations for noise
features and high-response activations for content features in the feature
space. This leads to the separation of clean contents from noise, effectively
denoising the image. Unlike disentanglement-based image editing tasks that edit
semantic-level attributes using styles, our main contribution lies in editing
pixel-level attributes through global noise-free styles. We conduct extensive
experiments on synthetic noise removal and real-world image denoising datasets
(SIDD and DND), demonstrating the effectiveness of our method in terms of both
PSNR and SSIM metrics. Moreover, we experimentally validate that our method
offers good interpretability.
- Abstract(参考訳): 画像デノイジングは低レベルのコンピュータビジョンにおける基本的なタスクである。
最近のディープラーニングベースの画像デノジング手法は印象的なパフォーマンスを達成しているが、それらはブラックボックスモデルであり、基本的なデノジング原理はいまだに不明である。
本稿では,画像のデノイジングに対して,明確なデノイジング機構と良好な性能を両立させる新しい手法を提案する。
ノイズをイメージスタイルの一種として捉え,クリーンイメージからのノイズフリースタイルを取り入れて除去する。
そこで我々は,新しい損失とネットワークモジュールを設計し,ノイズの多い画像からノイズのないスタイル,クリーンな画像からノイズのないスタイルを抽出する。
ノイズフリースタイルは、ノイズ特徴に対する低応答アクティベーションと、特徴空間におけるコンテンツ特徴に対する高応答アクティベーションを誘導する。
これにより、クリーンなコンテンツがノイズから切り離され、効果的に画像が切り離される。
スタイルを用いて意味レベルの属性を編集する画像編集タスクと異なり、我々の貢献は、グローバルノイズフリースタイルを通じてピクセルレベルの属性を編集することにあります。
合成ノイズ除去と実世界の画像復調データセット(SIDDとDND)について広範な実験を行い,PSNRとSSIMの両指標を用いて本手法の有効性を実証した。
さらに,本手法が良好な解釈性をもたらすことを実験的に検証した。
関連論文リスト
- A Self-Supervised Denoising Strategy for Underwater Acoustic Camera Imageries [3.0918473503782042]
本稿では,深層学習技術を用いた音響カメラ画像の復調手法を提案する。
微細な特徴を保存しながらノイズを除去し、局所的な特徴マッチングの性能を向上させる。
論文 参考訳(メタデータ) (2024-06-05T04:07:37Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
本稿では,デノナイジングネットワークの一般化性能を高めるための新しい手法を提案する。
提案手法では,入力画像のランダムなピクセルをマスキングし,学習中に欠落した情報を再構成する。
提案手法は,他のディープラーニングモデルよりも優れた一般化能力を示し,実世界のシナリオに直接適用可能である。
論文 参考訳(メタデータ) (2023-03-23T09:33:44Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
我々は,PNGAN(Pixel-level Noise-aware Generative Adrial Network)という新しいフレームワークを提案する。
PNGANは、トレーニング済みのリアルデノイザーを使用して、フェイク画像とリアルノイズ画像をほぼノイズのないソリューション空間にマッピングする。
より優れたノイズフィッティングを実現するため,ジェネレータとしてSimple Multi-versa-scale Network (SMNet) を提案する。
論文 参考訳(メタデータ) (2022-04-06T14:09:02Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Image Denoising Using the Geodesics' Gramian of the Manifold Underlying Patch-Space [1.7767466724342067]
本稿では,正確な画像を生成することができる新しい,計算効率の良い画像復号法を提案する。
画像の滑らか性を維持するため、画素ではなく画像から分割されたパッチを入力する。
本稿では,この手法の性能をベンチマーク画像処理法に対して検証する。
論文 参考訳(メタデータ) (2020-10-14T04:07:24Z) - Enhancing and Learning Denoiser without Clean Reference [23.11994688706024]
本稿では,ノイズ伝達タスクの特別事例として,ノイズ低減タスクに関する新しいディープイメージデノベーション手法を提案する。
実世界のデノナイジングベンチマークの結果から,提案手法は現実的な雑音を除去する上で有望な性能を実現することを示す。
論文 参考訳(メタデータ) (2020-09-09T13:15:31Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
本稿では,自己指導型学習と知識蒸留を取り入れた2段階の手法を提案する。
自己教師型学習では,実雑音の画像のみから視覚を学習するための拡張型盲点ネットワーク(D-BSN)を提案する。
実験の結果,本手法は合成ノイズ画像と実世界のノイズ画像の両方で良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-08-31T16:22:40Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
実世界の画像ノイズ除去は、コンピュータビジョンにおける長年の課題である。
本稿では,ノイズ除去およびノイズ発生タスクに対処する新しい統合フレームワークを提案する。
本手法はクリーンノイズ画像対の連成分布を学習する。
論文 参考訳(メタデータ) (2020-07-12T09:16:06Z) - NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis [5.645552640953684]
本稿では,画像中の支配雑音を反復的に検出し,調整したデノイザを用いて除去する段階的なデノイズ戦略を提案する。
本手法は, 遭遇した騒音の性質を把握し, 既存の騒音を新しいノイズ特性で拡張することを可能にする。
論文 参考訳(メタデータ) (2020-02-18T11:09:03Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。