論文の概要: A Self-Supervised Denoising Strategy for Underwater Acoustic Camera Imageries
- arxiv url: http://arxiv.org/abs/2406.02914v1
- Date: Wed, 5 Jun 2024 04:07:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:05:49.117208
- Title: A Self-Supervised Denoising Strategy for Underwater Acoustic Camera Imageries
- Title(参考訳): 水中音響カメラ画像の自己監督型デノナイズ戦略
- Authors: Xiaoteng Zhou, Katsunori Mizuno, Yilong Zhang,
- Abstract要約: 本稿では,深層学習技術を用いた音響カメラ画像の復調手法を提案する。
微細な特徴を保存しながらノイズを除去し、局所的な特徴マッチングの性能を向上させる。
- 参考スコア(独自算出の注目度): 3.0918473503782042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In low-visibility marine environments characterized by turbidity and darkness, acoustic cameras serve as visual sensors capable of generating high-resolution 2D sonar images. However, acoustic camera images are interfered with by complex noise and are difficult to be directly ingested by downstream visual algorithms. This paper introduces a novel strategy for denoising acoustic camera images using deep learning techniques, which comprises two principal components: a self-supervised denoising framework and a fine feature-guided block. Additionally, the study explores the relationship between the level of image denoising and the improvement in feature-matching performance. Experimental results show that the proposed denoising strategy can effectively filter acoustic camera images without prior knowledge of the noise model. The denoising process is nearly end-to-end without complex parameter tuning and post-processing. It successfully removes noise while preserving fine feature details, thereby enhancing the performance of local feature matching.
- Abstract(参考訳): 濁度と暗さを特徴とする低視認性海洋環境では、音響カメラは高解像度の2Dソナー画像を生成することができる視覚センサーとして機能する。
しかし、音響カメラ画像は複雑なノイズによって干渉され、下流の視覚アルゴリズムによって直接摂取することは困難である。
本稿では,自己監督型デノナイジングフレームワークと細かな特徴誘導ブロックの2つの主要構成要素からなる深層学習技術を用いて,音響カメラ画像のデノナイジング手法を提案する。
さらに,画像の認知レベルと特徴マッチング性能の改善との関係について検討した。
実験結果から,提案手法はノイズモデルに事前の知識を必要とせず,効果的に音響カメラ画像のフィルタリングを行うことができることがわかった。
denoisingプロセスは、複雑なパラメータチューニングと後処理なしで、ほぼエンドツーエンドである。
微細な特徴を保存しながらノイズを除去し、局所的な特徴マッチングの性能を向上させる。
関連論文リスト
- Image Denoising via Style Disentanglement [9.38519460509602]
そこで本稿では,鮮明な復調機構と優れた性能を兼ね備えた画像復調手法を提案する。
我々はノイズをイメージスタイルの一種とみなし、クリーンな画像から派生したノイズフリーなスタイルを取り入れて除去する。
合成ノイズ除去と実世界の画像デノゲーションデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-09-26T08:29:33Z) - Blind2Sound: Self-Supervised Image Denoising without Residual Noise [5.192255321684027]
Poisson-Gaussianノイズに対する自己監督型視覚障害は依然として困難な課題である。
そこで我々はBlind2Soundを提案する。Blind2Soundは難聴画像の残音を克服するシンプルで効果的な手法である。
論文 参考訳(メタデータ) (2023-03-09T11:21:59Z) - Noise2SR: Learning to Denoise from Super-Resolved Single Noisy
Fluorescence Image [9.388253054229155]
ノイズ2SRは、異なる次元の雑音のペア画像で訓練するために設計されている。
より効率的に自己監督され、単一ノイズの観測からより多くの画像の詳細を復元することができる。
我々は、ノイズ2SRは、他の種類の科学的画像品質を改善する可能性があると想定している。
論文 参考訳(メタデータ) (2022-09-14T04:44:41Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
本稿では,ノイズモデルとデノイザを同時にトレーニングするためのフレームワークを提案する。
ノイズ/クリーンなペア画像データではなく、ノイズの多いイメージのペアに依存します。
トレーニングされたデノイザーは、教師付きおよび弱教師付きベースラインデノイジングアプローチの両方において、大幅に改善される。
論文 参考訳(メタデータ) (2022-06-02T15:31:40Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
CMOS光センサの撮像パイプラインにおけるノイズ統計について検討する。
実雑音構造を正確に特徴付けることのできる包括的ノイズモデルを定式化する。
我々のノイズモデルは、学習に基づく低照度復調アルゴリズムのためのリアルなトレーニングデータを合成するのに利用できる。
論文 参考訳(メタデータ) (2021-08-04T16:36:29Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
本稿では,新しい自己教師型デノベーションフレームワークであるNoss2Sameを紹介する。
特にノイズ2Sameは、ノイズモデルに関するJ-不変性や余分な情報を必要としない。
以上の結果から,ノイズ2Sameは従来の自己監督型遮音法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2020-10-22T18:12:26Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z) - NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis [5.645552640953684]
本稿では,画像中の支配雑音を反復的に検出し,調整したデノイザを用いて除去する段階的なデノイズ戦略を提案する。
本手法は, 遭遇した騒音の性質を把握し, 既存の騒音を新しいノイズ特性で拡張することを可能にする。
論文 参考訳(メタデータ) (2020-02-18T11:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。