論文の概要: KERMIT: Knowledge Graph Completion of Enhanced Relation Modeling with
Inverse Transformation
- arxiv url: http://arxiv.org/abs/2309.14770v1
- Date: Tue, 26 Sep 2023 09:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 14:23:09.049258
- Title: KERMIT: Knowledge Graph Completion of Enhanced Relation Modeling with
Inverse Transformation
- Title(参考訳): KERMIT:逆変換を用いた強化関係モデリングの知識グラフ補完
- Authors: Haotian Li, Lingzhi Wang, Yuliang Wei, Richard Yi Da Xu, Bailing Wang
- Abstract要約: 外部知識ベースとしてChatGPTを使用して、クエリと回答間のセマンティックギャップを橋渡しするコヒーレントな記述を生成する。
逆関係を利用して対称グラフを作成し、余分なラベリングを生成し、リンク予測のための補足情報を提供する。
- 参考スコア(独自算出の注目度): 15.787778445130323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph completion is a task that revolves around filling in missing
triples based on the information available in a knowledge graph. Among the
current studies, text-based methods complete the task by utilizing textual
descriptions of triples. However, this modeling approach may encounter
limitations, particularly when the description fails to accurately and
adequately express the intended meaning. To overcome these challenges, we
propose the augmentation of data through two additional mechanisms. Firstly, we
employ ChatGPT as an external knowledge base to generate coherent descriptions
to bridge the semantic gap between the queries and answers. Secondly, we
leverage inverse relations to create a symmetric graph, thereby creating extra
labeling and providing supplementary information for link prediction. This
approach offers additional insights into the relationships between entities.
Through these efforts, we have observed significant improvements in knowledge
graph completion, as these mechanisms enhance the richness and diversity of the
available data, leading to more accurate results.
- Abstract(参考訳): 知識グラフ補完は、知識グラフで利用可能な情報に基づいて、行方不明のトリプルを埋める作業である。
最近の研究の中で、テキストベースの手法は三重項のテキスト記述を利用してタスクを完了している。
しかし、このモデリングアプローチは、特に記述が意図した意味を正確に適切に表現できない場合に、制限に直面する可能性がある。
これらの課題を克服するために,2つの追加メカニズムによるデータの増大を提案する。
まず,外部知識ベースとしてchatgptを用い,クエリと回答間の意味的ギャップを埋めるためのコヒーレント記述を生成する。
次に、逆関係を利用して対称グラフを作成し、余分なラベリングを生成し、リンク予測のための補足情報を提供する。
このアプローチはエンティティ間の関係に関するさらなる洞察を提供する。
これらの取り組みを通じて、これらのメカニズムは利用可能なデータの豊かさと多様性を高め、より正確な結果をもたらすため、知識グラフ補完の大幅な改善が見られた。
関連論文リスト
- Few-shot Knowledge Graph Relational Reasoning via Subgraph Adaptation [51.47994645529258]
Few-shot Knowledge Graph (KG) Reasoningは、KGにおける稀な関係に対して、目に見えない三つ子(すなわちクエリ三つ子)を予測することを目的としている。
本稿では,種々のサブグラフに文脈化グラフの情報を効果的に適応させる手法であるSAFER(Subgraph Adaptation for Few-shot Reasoning)を提案する。
論文 参考訳(メタデータ) (2024-06-19T21:40:35Z) - Exploring Large Language Models for Knowledge Graph Completion [17.139056629060626]
我々は知識グラフのトリプルをテキストシーケンスとみなし、知識グラフLLMと呼ばれる革新的なフレームワークを導入する。
提案手法では,三重項の実体的記述と関係的記述をプロンプトとして利用し,その応答を予測に利用する。
種々のベンチマーク知識グラフを用いた実験により,三重分類や関係予測といったタスクにおいて,本手法が最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-08-26T16:51:17Z) - Graph Relation Aware Continual Learning [3.908470250825618]
連続グラフ学習(CGL)は、無限のグラフデータストリームから学習する問題を研究する。
我々は、縁の裏側にある潜伏関係を探索する関係発見モジュールからなるRAM-CGと呼ばれる関係認識適応モデルを設計する。
RAM-CGはCitationNet、OGBN-arxiv、TWITCHデータセットの最先端結果に対して2.2%、6.9%、および6.6%の精度向上を提供する。
論文 参考訳(メタデータ) (2023-08-16T09:53:20Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Knowledge Graph Refinement based on Triplet BERT-Networks [0.0]
本稿では,知識グラフ内のエンティティや関係に関する情報を集約する埋め込み空間を作成するトランスフォーマーベースの三重項ネットワークを採用する。
事実からテキストシーケンスを生成し、事前訓練されたトランスフォーマーベースの言語モデルのトリプルトネットワークを微調整する。
これら2つの改良作業の最先端性能に対して, GilBERT は, より優れた, あるいは同等な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-11-18T19:01:21Z) - VEM$^2$L: A Plug-and-play Framework for Fusing Text and Structure
Knowledge on Sparse Knowledge Graph Completion [14.537509860565706]
本稿では,テキストから抽出した知識と構造化メッセージから抽出した知識を統一化するための,スパース知識グラフ上のプラグイン・アンド・プレイ・フレームワーク VEM2L を提案する。
具体的には、モデルによって得られた知識を2つの非重複部分に分割する。
また、モデルの一般化能力を融合させるために、変分EMアルゴリズムによって証明された新しい融合戦略を提案する。
論文 参考訳(メタデータ) (2022-07-04T15:50:21Z) - Knowledge Graph Completion with Text-aided Regularization [2.8361571014635407]
知識グラフ補完は、可能なエンティティを推定することによって知識グラフ/ベースを拡張するタスクである。
従来のアプローチは主に、グラフ固有の既存のグラフィカル情報の使用に重点を置いている。
我々は、既存のkg埋め込みフレームワークがより良い予測結果に達するのを助けるために、抽出または生のテキスト情報を使用する多くの方法を試みる。
論文 参考訳(メタデータ) (2021-01-22T06:10:09Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z) - Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion [53.31911669146451]
人為的な知識グラフは、様々な自然言語処理タスクに重要な支援情報を提供する。
これらのグラフは通常不完全であり、自動補完を促す。
グラフ埋め込みアプローチ(例えばTransE)は、グラフ要素を密度の高い埋め込みに表現することで構造化された知識を学ぶ。
テキストエンコーディングアプローチ(KG-BERTなど)は、グラフトリプルのテキストとトリプルレベルの文脈化表現を利用する。
論文 参考訳(メタデータ) (2020-04-30T13:50:34Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。