Transferring climate change knowledge
- URL: http://arxiv.org/abs/2309.14780v4
- Date: Wed, 19 Jun 2024 08:50:50 GMT
- Title: Transferring climate change knowledge
- Authors: Francesco Immorlano, Veronika Eyring, Thomas le Monnier de Gouville, Gabriele Accarino, Donatello Elia, Giovanni Aloisio, Pierre Gentine,
- Abstract summary: We show that Machine Learning can be used to optimally leverage and merge the knowledge gained from Earth system models simulations and historical observations.
We reach an uncertainty reduction of more than 50% with respect to state-of-the-art approaches.
- Score: 0.15742383563959128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and precise climate projections are required for climate adaptation and mitigation, but Earth system models still exhibit great uncertainties. Several approaches have been developed to reduce the spread of climate projections and feedbacks, yet those methods cannot capture the non-linear complexity inherent in the climate system. Using a Transfer Learning approach, we show that Machine Learning can be used to optimally leverage and merge the knowledge gained from Earth system models simulations and historical observations to more accurately project global surface air temperature fields in the 21st century. We reach an uncertainty reduction of more than 50% with respect to state-of-the-art approaches. We give evidence that our novel method provides narrower projection uncertainty together with more accurate mean climate projections, urgently required for climate adaptation.
Related papers
- Resolution-Agnostic Transformer-based Climate Downscaling [0.0]
This study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model.
It performs well without additional training, demonstrating its ability to generalize across different resolutions.
Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables.
arXiv Detail & Related papers (2024-11-22T07:32:11Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Modeling chaotic Lorenz ODE System using Scientific Machine Learning [1.4633779950109127]
In this paper, we have integrated Scientific Machine Learning (SciML) methods into foundational weather models.
By combining the interpretability of physical climate models with the computational power of neural networks, SciML models can prove to be a reliable tool for modeling climate.
arXiv Detail & Related papers (2024-10-09T01:17:06Z) - Robustness of AI-based weather forecasts in a changing climate [1.4779266690741741]
We show that current state-of-the-art machine learning models trained for weather forecasting in present-day climate produce skillful forecasts across different climate states.
Despite current limitations, our results suggest that data-driven machine learning models will provide powerful tools for climate science.
arXiv Detail & Related papers (2024-09-27T08:11:49Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Evaluating the transferability potential of deep learning models for climate downscaling [16.30722178785489]
We evaluate the efficacy of training deep learning downscaling models on multiple climate datasets to learn more robust and transferable representations.
We assess the spatial, variable, and product transferability of downscaling models experimentally, to understand the generalizability of these different architecture types.
arXiv Detail & Related papers (2024-07-17T12:10:24Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Climate-Invariant Machine Learning [0.8831201550856289]
Current climate models require representations of processes that occur at scales smaller than model grid size.
Recent machine learning (ML) algorithms hold promise to improve such process representations, but tend to extrapolate poorly to climate regimes they were not trained on.
We propose a new framework - termed "climate-invariant" ML - incorporating knowledge of climate processes into ML algorithms.
arXiv Detail & Related papers (2021-12-14T07:02:57Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.