Resolution-Agnostic Transformer-based Climate Downscaling
- URL: http://arxiv.org/abs/2411.14774v1
- Date: Fri, 22 Nov 2024 07:32:11 GMT
- Title: Resolution-Agnostic Transformer-based Climate Downscaling
- Authors: Declan Curran, Hira Saleem, Flora Salim, Sanaa Hobeichi,
- Abstract summary: This study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model.
It performs well without additional training, demonstrating its ability to generalize across different resolutions.
Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables.
- Score: 0.0
- License:
- Abstract: Understanding future weather changes at regional and local scales is crucial for planning and decision-making, particularly in the context of extreme weather events, as well as for broader applications in agriculture, insurance, and infrastructure development. However, the computational cost of downscaling Global Climate Models (GCMs) to the fine resolutions needed for such applications presents a significant barrier. Drawing on advancements in weather forecasting models, this study introduces a cost-efficient downscaling method using a pretrained Earth Vision Transformer (Earth ViT) model. Initially trained on ERA5 data to downscale from 50 km to 25 km resolution, the model is then tested on the higher resolution BARRA-SY dataset at a 3 km resolution. Remarkably, it performs well without additional training, demonstrating its ability to generalize across different resolutions. This approach holds promise for generating large ensembles of regional climate simulations by downscaling GCMs with varying input resolutions without incurring additional training costs. Ultimately, this method could provide more comprehensive estimates of potential future changes in key climate variables, aiding in effective planning for extreme weather events and climate change adaptation strategies.
Related papers
- Super Resolution On Global Weather Forecasts [0.1747623282473278]
Group seeks to improve upon existing deep learning based forecasting methods by increasing spatial resolutions of global weather predictions.
Specifically, we are interested in performing super resolution (SR) on GraphCast temperature predictions by increasing the global precision from 1 degree of accuracy to 0.5 degrees.
arXiv Detail & Related papers (2024-09-17T19:07:13Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model [22.255982502297197]
High-resolution climate simulations are valuable for understanding climate change impacts and planning adaptation measures.
We present CPMGEM, a novel application of a generative machine learning model, a diffusion model, to emulate precipitation simulations from such a high-resolution model over England and Wales at much lower cost.
arXiv Detail & Related papers (2024-07-19T09:42:20Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
We introduce a novel strategy that deviates from the common dependence on high-resolution data.
This paper improves on conventional approaches by adding more variables and a novel approach to data augmentation and processing.
Our findings reveal that despite the lower resolution, the proposed approach demonstrates considerable accuracy in predicting atmospheric conditions.
arXiv Detail & Related papers (2024-02-13T03:01:22Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Self Supervised Vision for Climate Downscaling [16.407155686685666]
Future projections for climate change research are based on Earth System Models (ESMs), the computer models that simulate the Earth's climate system.
ESMs provide a framework to integrate various physical systems, but their output is bound by the enormous computational resources required for running and archiving higher-resolution simulations.
In this work, we present a deep-learning model for downscaling ESM simulation data that does not require high-resolution ground truth data for model optimization.
arXiv Detail & Related papers (2024-01-09T10:20:49Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
We present auxiliary informed-temporal neural architecture for statistical downscaling.
Current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India.
arXiv Detail & Related papers (2020-09-23T17:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.