Learning Generative Models for Climbing Aircraft from Radar Data
- URL: http://arxiv.org/abs/2309.14941v1
- Date: Tue, 26 Sep 2023 13:53:53 GMT
- Title: Learning Generative Models for Climbing Aircraft from Radar Data
- Authors: Nick Pepper and Marc Thomas
- Abstract summary: This paper proposes a generative model for climbing aircraft in which the standard Base of Aircraft Data (BADA) model is enriched by a functional correction to the thrust that is learned from data.
The method offers three features: predictions of the arrival time with 66.3% less error when compared to BADA; generated trajectories that are realistic when compared to test data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate trajectory prediction (TP) for climbing aircraft is hampered by the
presence of epistemic uncertainties concerning aircraft operation, which can
lead to significant misspecification between predicted and observed
trajectories. This paper proposes a generative model for climbing aircraft in
which the standard Base of Aircraft Data (BADA) model is enriched by a
functional correction to the thrust that is learned from data. The method
offers three features: predictions of the arrival time with 66.3% less error
when compared to BADA; generated trajectories that are realistic when compared
to test data; and a means of computing confidence bounds for minimal
computational cost.
Related papers
- Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
We propose a data-driven learning framework, that leverages the predictive and feature extraction capabilities of the mixture models and seq2seq-based neural networks.
After training with this framework, the learned model can improve long-step prediction accuracy significantly.
The accuracy and effectiveness of the approach are evaluated by comparing the predicted trajectories with the ground truth.
arXiv Detail & Related papers (2024-09-25T21:08:25Z) - Context-Aware Generative Models for Prediction of Aircraft Ground Tracks [0.004807514276707785]
Trajectory prediction plays an important role in supporting the decision-making of Air Traffic Controllers.
Traditional TP methods are deterministic and physics-based, with parameters calibrated using aircraft surveillance data harvested across the world.
This work proposes a generative method for lateral TP, using probabilistic machine learning to model the effect of the unknown effect of pilot behaviour and ATCO intentions.
arXiv Detail & Related papers (2023-09-26T14:20:09Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
We propose a probabilistic model that can learn the variability from procedural data and flight tracks collected from radar surveillance data.
We show how a pairwise model can be used to generate traffic involving an arbitrary number of aircraft.
arXiv Detail & Related papers (2023-03-17T13:58:06Z) - Data-Efficient Modeling for Precise Power Consumption Estimation of
Quadrotor Operations Using Ensemble Learning [3.722516004544342]
Electric Take-Off and Landing (eVTOL) aircraft is considered as the major aircraft type in the emerging urban air mobility.
In this study, a framework for power consumption modeling of eVTOL aircraft was established.
We employed an ensemble learning method, namely stacking, to develop a data-driven model using flight records of three different types of quadrotors.
arXiv Detail & Related papers (2022-05-23T02:16:43Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - 4D flight trajectory prediction using a hybrid Deep Learning prediction
method based on ADS-B technology: a case study of Hartsfield-Jackson Atlanta
International Airport(ATL) [2.2118683064997264]
This paper proposes a novel hybrid deep learning model to extract the spatial and temporal features considering the uncertainty of the prediction model for Hartsfield-Jackson Atlanta International Airport(ATL)
The results show that the proposed model has low error measurements compared to the other models (i.e., 3D CNN, CNN-GRU)
arXiv Detail & Related papers (2021-10-14T23:48:44Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - From industry-wide parameters to aircraft-centric on-flight inference:
improving aeronautics performance prediction with machine learning [5.171090309853363]
Aircraft performance models play a key role in airline operations, especially in planning a fuel-efficient flight.
In practice, manufacturers provide guidelines which are slightly modified throughout the aircraft life cycle via the tuning of a single factor, enabling better fuel predictions.
This has limitations, in particular they do not reflect the evolution of each feature impacting the aircraft performance.
The key contribution of the present article is to foster the use of machine learning to leverage the massive amounts of data continuously recorded during flights performed by an aircraft.
arXiv Detail & Related papers (2020-05-11T17:40:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.