Physics-informed Gaussian Processes for Safe Envelope Expansion
- URL: http://arxiv.org/abs/2501.01000v1
- Date: Thu, 02 Jan 2025 01:37:15 GMT
- Title: Physics-informed Gaussian Processes for Safe Envelope Expansion
- Authors: D. Isaiah Harp, Joshua Ott, Dylan M. Asmar, John Alora, Mykel J. Kochenderfer,
- Abstract summary: We propose a novel approach to flight test analysis using Gaussian processes (GPs) with physics-informed mean functions.
We demonstrate our method by estimating the pitching moment coefficient without requiring predefined or repeated flight test points.
- Score: 35.86317155999886
- License:
- Abstract: Flight test analysis often requires predefined test points with arbitrarily tight tolerances, leading to extensive and resource-intensive experimental campaigns. To address this challenge, we propose a novel approach to flight test analysis using Gaussian processes (GPs) with physics-informed mean functions to estimate aerodynamic quantities from arbitrary flight test data, validated using real T-38 aircraft data collected in collaboration with the United States Air Force Test Pilot School. We demonstrate our method by estimating the pitching moment coefficient without requiring predefined or repeated flight test points, significantly reducing the need for extensive experimental campaigns. Our approach incorporates aerodynamic models as priors within the GP framework, enhancing predictive accuracy across diverse flight conditions and providing robust uncertainty quantification. Key contributions include the integration of physics-based priors in a probabilistic model, which allows for precise computation from arbitrary flight test maneuvers, and the demonstration of our method capturing relevant dynamic characteristics such as short-period mode behavior. The proposed framework offers a scalable and generalizable solution for efficient data-driven flight test analysis and is able to accurately predict the short period frequency and damping for the T-38 across several Mach and dynamic pressure profiles.
Related papers
- An Empirical Wall-Pressure Spectrum Model for Aeroacoustic Predictions Based on Symbolic Regression [36.814181034608666]
This paper introduces a new wall-pressure spectrum empirical model designed to enhance the robustness and accuracy of current predictions.
The model is developed using AI-based symbolic regression via a genetic-algorithm-based approach.
It is integrated with Amiet's theory to predict the aeroacoustic noise of a full-scale wind turbine.
arXiv Detail & Related papers (2025-01-14T14:14:22Z) - Conformalized Prediction of Post-Fault Voltage Trajectories Using Pre-trained and Finetuned Attention-Driven Neural Operators [9.336308366735656]
We propose a new data-driven methodology for predicting intervals of post-fault voltage trajectories in power systems.
The proposed operator regression model maps the observed portion of the voltage trajectory to its unobserved post-fault trajectory.
We evaluate the performance of the proposed methodology using the New England 39-bus test system.
arXiv Detail & Related papers (2024-10-31T17:20:13Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Learning Generative Models for Climbing Aircraft from Radar Data [0.0]
This paper proposes a generative model for climbing aircraft in which the standard Base of Aircraft Data (BADA) model is enriched by a functional correction to the thrust that is learned from data.
The method offers three features: predictions of the arrival time with 66.3% less error when compared to BADA; generated trajectories that are realistic when compared to test data.
arXiv Detail & Related papers (2023-09-26T13:53:53Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Machine learning enhanced real-time aerodynamic forces prediction based
on sparse pressure sensor inputs [7.112725255953468]
This paper presents a data-driven aerodynamic force prediction model based on a small number of pressure sensors.
The model is tested on numerical and experimental dynamic stall data of a 2D NACA0015 airfoil, and numerical simulation data of dynamic stall of a 3D drone.
arXiv Detail & Related papers (2023-05-16T06:15:13Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
We propose a probabilistic model that can learn the variability from procedural data and flight tracks collected from radar surveillance data.
We show how a pairwise model can be used to generate traffic involving an arbitrary number of aircraft.
arXiv Detail & Related papers (2023-03-17T13:58:06Z) - Investigation of Physics-Informed Deep Learning for the Prediction of
Parametric, Three-Dimensional Flow Based on Boundary Data [0.0]
We present a parameterized surrogate model for the prediction of three-dimensional flow fields in aerothermal vehicle simulations.
The proposed physics-informed neural network (PINN) design is aimed at learning families of flow solutions according to a geometric variation.
arXiv Detail & Related papers (2022-03-17T09:54:22Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.