HPCR: Holistic Proxy-based Contrastive Replay for Online Continual
Learning
- URL: http://arxiv.org/abs/2309.15038v1
- Date: Tue, 26 Sep 2023 16:12:57 GMT
- Title: HPCR: Holistic Proxy-based Contrastive Replay for Online Continual
Learning
- Authors: Huiwei Lin, Shanshan Feng, Baoquan Zhang, Xutao Li, Yew-soon Ong,
Yunming Ye
- Abstract summary: Online continual learning (OCL) aims to continuously learn new data from a single pass over the online data stream.
Existing replay-based methods effectively alleviate this issue by replaying part of old data in a proxy-based or contrastive-based replay manner.
Inspired by this finding, we propose a novel replay-based method called proxy-based contrastive replay (PCR)
- Score: 44.65144198656702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online continual learning (OCL) aims to continuously learn new data from a
single pass over the online data stream. It generally suffers from the
catastrophic forgetting issue. Existing replay-based methods effectively
alleviate this issue by replaying part of old data in a proxy-based or
contrastive-based replay manner. In this paper, we conduct a comprehensive
analysis of these two replay manners and find they can be complementary.
Inspired by this finding, we propose a novel replay-based method called
proxy-based contrastive replay (PCR), which replaces anchor-to-sample pairs
with anchor-to-proxy pairs in the contrastive-based loss to alleviate the
phenomenon of forgetting. Based on PCR, we further develop a more advanced
method named holistic proxy-based contrastive replay (HPCR), which consists of
three components. The contrastive component conditionally incorporates
anchor-to-sample pairs to PCR, learning more fine-grained semantic information
with a large training batch. The second is a temperature component that
decouples the temperature coefficient into two parts based on their impacts on
the gradient and sets different values for them to learn more novel knowledge.
The third is a distillation component that constrains the learning process to
keep more historical knowledge. Experiments on four datasets consistently
demonstrate the superiority of HPCR over various state-of-the-art methods.
Related papers
- A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling [1.1622133377827824]
We propose a modular two-stage approach for guided reconstruction.
In a radiological task, MUNIT allowed 33.3% more acceleration over clinical reconstruction at diagnostic quality.
arXiv Detail & Related papers (2024-09-20T13:08:51Z) - REAL: Representation Enhanced Analytic Learning for Exemplar-free Class-incremental Learning [12.197327462627912]
We propose a representation enhanced analytic learning (REAL) for Exemplar-free class-incremental learning (EFCIL)
The REAL constructs a dual-stream base pretraining (DS-BPT) and a representation enhancing distillation (RED) process to enhance the representation of the extractor.
Our method addresses the issue of insufficient discriminability in representations of unseen data caused by a frozen backbone in the existing AL-based CIL.
arXiv Detail & Related papers (2024-03-20T11:48:10Z) - Dealing with Cross-Task Class Discrimination in Online Continual
Learning [54.31411109376545]
This paper argues for another challenge in class-incremental learning (CIL)
How to establish decision boundaries between the classes of the new task and old tasks with no (or limited) access to the old task data.
A replay method saves a small amount of data (replay data) from previous tasks. When a batch of current task data arrives, the system jointly trains the new data and some sampled replay data.
This paper argues that the replay approach also has a dynamic training bias issue which reduces the effectiveness of the replay data in solving the CTCD problem.
arXiv Detail & Related papers (2023-05-24T02:52:30Z) - PCR: Proxy-based Contrastive Replay for Online Class-Incremental
Continual Learning [16.67238259139417]
Existing replay-based methods effectively alleviate this issue by saving and replaying part of old data in a proxy-based or contrastive-based replay manner.
We propose a novel replay-based method called proxy-based contrastive replay (PCR)
arXiv Detail & Related papers (2023-04-10T06:35:19Z) - Dataset Distillation via Factorization [58.8114016318593]
We introduce a emphdataset factorization approach, termed emphHaBa, which is a plug-and-play strategy portable to any existing dataset distillation (DD) baseline.
emphHaBa explores decomposing a dataset into two components: data emphHallucination networks and emphBases.
Our method can yield significant improvement on downstream classification tasks compared with previous state of the arts, while reducing the total number of compressed parameters by up to 65%.
arXiv Detail & Related papers (2022-10-30T08:36:19Z) - Few-Shot Class-Incremental Learning via Entropy-Regularized Data-Free
Replay [52.251188477192336]
Few-shot class-incremental learning (FSCIL) has been proposed aiming to enable a deep learning system to incrementally learn new classes with limited data.
We show through empirical results that adopting the data replay is surprisingly favorable.
We propose using data-free replay that can synthesize data by a generator without accessing real data.
arXiv Detail & Related papers (2022-07-22T17:30:51Z) - Look Back When Surprised: Stabilizing Reverse Experience Replay for
Neural Approximation [7.6146285961466]
We consider the recently developed and theoretically rigorous reverse experience replay (RER)
We show via experiments that this has a better performance than techniques like prioritized experience replay (PER) on various tasks.
arXiv Detail & Related papers (2022-06-07T10:42:02Z) - Self-Supervised Learning for MRI Reconstruction with a Parallel Network
Training Framework [24.46388892324129]
The proposed method is flexible and can be employed in any existing deep learning-based method.
The effectiveness of the method is evaluated on an open brain MRI dataset.
arXiv Detail & Related papers (2021-09-26T06:09:56Z) - Always Be Dreaming: A New Approach for Data-Free Class-Incremental
Learning [73.24988226158497]
We consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL)
We propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation.
Our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks.
arXiv Detail & Related papers (2021-06-17T17:56:08Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.