A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling
- URL: http://arxiv.org/abs/2409.13477v1
- Date: Fri, 20 Sep 2024 13:08:51 GMT
- Title: A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling
- Authors: Chinmay Rao, Matthias van Osch, Nicola Pezzotti, Jeroen de Bresser, Laurens Beljaards, Jakob Meineke, Elwin de Weerdt, Huangling Lu, Mariya Doneva, Marius Staring,
- Abstract summary: We propose a modular two-stage approach for guided reconstruction.
In a radiological task, MUNIT allowed 33.3% more acceleration over clinical reconstruction at diagnostic quality.
- Score: 1.1622133377827824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since multiple MRI contrasts of the same anatomy contain redundant information, one contrast can be used as a prior for guiding the reconstruction of an undersampled subsequent contrast. To this end, several learning-based guided reconstruction methods have been proposed. However, two key challenges remain - (a) the requirement of large paired training datasets and (b) the lack of intuitive understanding of the model's internal representation and utilization of the shared information. We propose a modular two-stage approach for guided reconstruction, addressing these challenges. A content/style model of two-contrast image data is learned in a largely unpaired manner and is subsequently applied as a plug-and-play operator in iterative reconstruction. The disentanglement of content and style allows explicit representation of contrast-independent and contrast-specific factors. Based on this, incorporating prior information into the reconstruction reduces to simply replacing the aliased reconstruction content with clean content derived from the reference scan. We name this novel approach PnP-MUNIT. Various aspects like interpretability and convergence are explored via simulations. Furthermore, its practicality is demonstrated on the NYU fastMRI DICOM dataset and two in-house raw datasets, obtaining up to 32.6% more acceleration over learning-based non-guided reconstruction for a given SSIM. In a radiological task, PnP-MUNIT allowed 33.3% more acceleration over clinical reconstruction at diagnostic quality.
Related papers
- DuDoUniNeXt: Dual-domain unified hybrid model for single and
multi-contrast undersampled MRI reconstruction [24.937435059755288]
We propose DuDoUniNeXt, a unified dual-domain MRI reconstruction network that can accommodate to scenarios involving absent, low-quality, and high-quality reference images.
Experimental results demonstrate that the proposed model surpasses state-of-the-art SC and MC models significantly.
arXiv Detail & Related papers (2024-03-08T12:26:48Z) - Dual-Domain Multi-Contrast MRI Reconstruction with Synthesis-based
Fusion Network [8.721677700107639]
Our proposed framework, based on deep learning, facilitates the optimisation for under-sampled target contrast.
The method consists of three key steps: 1) Learning to synthesise data resembling the target contrast from the reference contrast; 2) Registering the multi-contrast data to reduce inter-scan motion; and 3) Utilising the registered data for reconstructing the target contrast.
Experiments demonstrate the superiority of our proposed framework, for up to an 8-fold acceleration rate, compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2023-12-01T15:40:26Z) - Fill the K-Space and Refine the Image: Prompting for Dynamic and
Multi-Contrast MRI Reconstruction [31.404228406642194]
The key to dynamic or multi-contrast magnetic resonance imaging (MRI) reconstruction lies in exploring inter-frame or inter-contrast information.
We propose a two-stage MRI reconstruction pipeline to address these limitations.
Our proposed method significantly outperforms previous state-of-the-art accelerated MRI reconstruction methods.
arXiv Detail & Related papers (2023-09-25T02:51:00Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Exploring Separable Attention for Multi-Contrast MR Image
Super-Resolution [88.16655157395785]
We propose a separable attention network (comprising a priority attention and background separation attention) named SANet.
It can explore the foreground and background areas in the forward and reverse directions with the help of the auxiliary contrast.
It is the first model to explore a separable attention mechanism that uses the auxiliary contrast to predict the foreground and background regions.
arXiv Detail & Related papers (2021-09-03T05:53:07Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - One Network to Solve Them All: A Sequential Multi-Task Joint Learning
Network Framework for MR Imaging Pipeline [12.684219884940056]
A sequential multi-task joint learning network model is proposed to train a combined end-to-end pipeline.
The proposed framework is verified on MRB dataset, which achieves superior performance on other SOTA methods in terms of both reconstruction and segmentation.
arXiv Detail & Related papers (2021-05-14T05:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.