論文の概要: Attention Satisfies: A Constraint-Satisfaction Lens on Factual Errors of
Language Models
- arxiv url: http://arxiv.org/abs/2309.15098v1
- Date: Tue, 26 Sep 2023 17:48:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 12:32:21.235618
- Title: Attention Satisfies: A Constraint-Satisfaction Lens on Factual Errors of
Language Models
- Title(参考訳): 注意:言語モデルの事実的誤りに対する制約満足レンズ
- Authors: Mert Yuksekgonul, Varun Chandrasekaran, Erik Jones, Suriya Gunasekar,
Ranjita Naik, Hamid Palangi, Ece Kamar, Besmira Nushi
- Abstract要約: 本稿では,トランスフォーマーを用いた大規模言語モデル (LLM) の内部動作について検討する。
本稿では,制約満足度問題(Constraint Satisfaction Problems)としてファクトクエリのモデル化を提案し,このフレームワークを用いて,モデルが事実制約と内部的にどのように相互作用するかを考察する。
具体的には,制約トークンに対するモデルの注意と,その応答の事実的正確性との間には,強い正の相関関係が発見された。
- 参考スコア(独自算出の注目度): 40.24951021119038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the internal behavior of Transformer-based Large Language
Models (LLMs) when they generate factually incorrect text. We propose modeling
factual queries as Constraint Satisfaction Problems and use this framework to
investigate how the model interacts internally with factual constraints.
Specifically, we discover a strong positive relation between the model's
attention to constraint tokens and the factual accuracy of its responses. In
our curated suite of 11 datasets with over 40,000 prompts, we study the task of
predicting factual errors with the Llama-2 family across all scales (7B, 13B,
70B). We propose SAT Probe, a method probing self-attention patterns, that can
predict constraint satisfaction and factual errors, and allows early error
identification. The approach and findings demonstrate how using the mechanistic
understanding of factuality in LLMs can enhance reliability.
- Abstract(参考訳): 本稿では,トランスフォーマーを用いた大規模言語モデル (LLM) の内部動作について検討する。
本稿では,制約満足度問題(Constraint Satisfaction Problems)としてファクトクエリをモデル化し,モデルが事実制約と内部的にどのように相互作用するかを検討する。
具体的には,制約トークンに対するモデルの注意と,その応答の事実的正確性との間に強い正の関係を見出した。
4万以上のプロンプトを持つ11のデータセットからなるキュレートされたスイートにおいて、全スケール(7B, 13B, 70B)にわたるLlama-2ファミリーによる事実エラーを予測するタスクについて検討した。
本稿では,制約満足度と実ミスを予測し,早期の誤り識別を可能にする自己注意パターン探索手法SAT Probeを提案する。
このアプローチと知見は, LLMにおける現実性の機械的理解が信頼性を高めることを示す。
関連論文リスト
- Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors [11.07539342949602]
本稿では,テキスト要約における事実誤り検出のためのエンドツーエンドフレームワークを提案する。
我々のフレームワークは、様々なLCMプロンプトを使用して、事実の矛盾を識別する。
我々は、アンサンブルされたモデルを校正し、テキストが実際に一貫した、あるいは幻覚のない、経験的に正確な確率を生成する。
論文 参考訳(メタデータ) (2024-06-18T18:59:37Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
言語モデルの自然言語理解(NLU)能力を評価するための主要な手段として、読解理解(RC)があげられる。
文脈がモデルの内部知識と一致している場合、モデルの回答がコンテキスト理解に由来するのか、あるいは内部情報から生じるのかを識別することは困難である。
この問題に対処するために、架空の事実や実体に基づいて、想像上のデータにRCを使うことを提案する。
論文 参考訳(メタデータ) (2024-04-09T13:08:56Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
ChatGPTのような大規模言語モデル(LLM)は、事前学習や微調整の知識が豊富にあるため、様々な応用がある。
それにもかかわらず、医療、ジャーナリズム、教育といった重要な分野に懸念を抱き、事実と常識の誤りを引き起こす傾向にある。
LLMにおける事実不正確な事実を明らかにすることを目的とした,新しい自動テストフレームワークであるFactCheckerを紹介する。
論文 参考訳(メタデータ) (2024-01-01T14:02:27Z) - You don't need a personality test to know these models are unreliable: Assessing the Reliability of Large Language Models on Psychometric Instruments [37.03210795084276]
本稿では, 大規模言語モデルが応答を一貫した, 頑健な方法で引き起こすかどうかを考察する。
17種類のLDM実験により,単純な摂動でさえモデルの問合せ能力を大幅に低下させることが判明した。
その結果,現在広く普及しているプロンプトは,モデル知覚を正確にかつ確実に捉えるには不十分であることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T09:50:53Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
本稿では,Felmと呼ばれる大規模言語モデルのファクチュアリティ評価のためのベンチマークを紹介する。
我々は,大規模言語モデルから生成された応答を収集し,微粒な方法で事実ラベルを注釈付けする。
その結果,検索は事実性評価に役立つが,現在のLCMは事実の誤りを忠実に検出するには不十分であることがわかった。
論文 参考訳(メタデータ) (2023-10-01T17:37:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
ファクトイドの問題に関する様々なプロンプトを考慮すれば、大きな言語モデル(LLM)は事実的に正しい答えを確実に生成できるだろうか?
LLMの事実知識を評価する統計的手法であるKaRRを提案する。
この結果から,同じバックボーン構造を持つLLMの知識はスケーリング法則に則っており,命令追従データに基づくチューニングは,実際に正しいテキストを確実に生成するモデルの能力を損なう場合があることがわかった。
論文 参考訳(メタデータ) (2023-05-17T18:54:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。