Revealing the Power of Spatial-Temporal Masked Autoencoders in
Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2309.15169v1
- Date: Tue, 26 Sep 2023 18:05:19 GMT
- Title: Revealing the Power of Spatial-Temporal Masked Autoencoders in
Multivariate Time Series Forecasting
- Authors: Jiarui Sun, Yujie Fan, Chin-Chia Michael Yeh, Wei Zhang, Girish
Chowdhary
- Abstract summary: We propose an MTS forecasting framework that leverages masked autoencoders to enhance the performance of spatial-temporal baseline models.
In the pretraining stage, an encoder-decoder architecture is employed to process partially visible MTS data.
In the fine-tuning stage, the encoder is retained, and the original decoder from existing spatial-temporal models is appended for forecasting.
- Score: 17.911251232225094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series (MTS) forecasting involves predicting future time
series data based on historical observations. Existing research primarily
emphasizes the development of complex spatial-temporal models that capture
spatial dependencies and temporal correlations among time series variables
explicitly. However, recent advances have been impeded by challenges relating
to data scarcity and model robustness. To address these issues, we propose
Spatial-Temporal Masked Autoencoders (STMAE), an MTS forecasting framework that
leverages masked autoencoders to enhance the performance of spatial-temporal
baseline models. STMAE consists of two learning stages. In the pretraining
stage, an encoder-decoder architecture is employed. The encoder processes the
partially visible MTS data produced by a novel dual-masking strategy, including
biased random walk-based spatial masking and patch-based temporal masking.
Subsequently, the decoders aim to reconstruct the masked counterparts from both
spatial and temporal perspectives. The pretraining stage establishes a
challenging pretext task, compelling the encoder to learn robust
spatial-temporal patterns. In the fine-tuning stage, the pretrained encoder is
retained, and the original decoder from existing spatial-temporal models is
appended for forecasting. Extensive experiments are conducted on multiple MTS
benchmarks. The promising results demonstrate that integrating STMAE into
various spatial-temporal models can largely enhance their MTS forecasting
capability.
Related papers
- SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++ is a novel framework that integrates pretraining and downstream tasks using consecutive camera pairs.
We show that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions.
With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving.
arXiv Detail & Related papers (2025-03-25T17:59:57Z) - PreMixer: MLP-Based Pre-training Enhanced MLP-Mixers for Large-scale Traffic Forecasting [30.055634767677823]
In urban computing, precise and swift forecasting of time series data from traffic networks is crucial.
Current research limitations because of inherent inefficiency of model and their unsuitability for large-scale traffic applications due to model complexity.
This paper proposes a novel framework, named PreMixer, designed to bridge this gap. It features a predictive model and a pre-training mechanism, both based on the principles of Multi-Layer Perceptrons (MLP)
Our framework achieves comparable state-of-theart performance while maintaining high computational efficiency, as verified by extensive experiments on large-scale traffic datasets.
arXiv Detail & Related papers (2024-12-18T08:35:40Z) - Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
Traffic forecasting has emerged as a crucial research area in the development of smart cities.
Recent advancements in network modeling for most-temporal correlations are starting to see diminishing returns in performance.
To tackle these challenges, we introduce the Spatio-Temporal Graph Transformer (STGormer)
We design two straightforward yet effective spatial encoding methods based on the structure and integrate time position into the vanilla transformer to capture-temporal traffic patterns.
arXiv Detail & Related papers (2024-08-20T13:18:21Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
The proposed ST-Mamba model is first to leverage the power of spatial-temporal learning in traffic flow prediction without using graph modeling.
The proposed ST-Mamba model achieves a 61.11% improvement in computational speed and increases prediction accuracy by 0.67%.
Experiments with real-world traffic datasets demonstrate that the textsfST-Mamba model sets a new benchmark in traffic flow prediction.
arXiv Detail & Related papers (2024-04-20T03:57:57Z) - Spatial-Temporal Large Language Model for Traffic Prediction [21.69991612610926]
We propose a Spatial-Temporal Large Language Model (ST-LLM) for traffic prediction.
In the ST-LLM, we define timesteps at each location as tokens and design a spatial-temporal embedding to learn the spatial location and global temporal patterns of these tokens.
In experiments on real traffic datasets, ST-LLM is a powerful spatial-temporal learner that outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-01-18T17:03:59Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for
Traffic Flow Prediction [10.722455633629883]
We propose a Transport-Hub-aware spatial-temporal adaptive graph transFormer for traffic flow prediction.
Specifically, we first design a novel spatial self-attention module to capture the dynamic spatial dependencies.
We also employ a temporal self-attention module to detect dynamic temporal patterns in the traffic flow data.
arXiv Detail & Related papers (2023-10-12T13:44:35Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction [36.77135502344546]
We propose a novel Spatio-Supervised Learning (ST-SSL) traffic prediction framework.
Our ST-SSL is built over an integrated module with temporal spatial convolutions for encoding the information across space and time.
Experiments on four benchmark datasets demonstrate that ST-SSL consistently outperforms various state-of-the-art baselines.
arXiv Detail & Related papers (2022-12-07T10:02:01Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
We present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE)
To leverage temporal information, we include a temporal embedding along with independently masking image patches across time.
arXiv Detail & Related papers (2022-07-17T01:35:29Z) - P-STMO: Pre-Trained Spatial Temporal Many-to-One Model for 3D Human Pose
Estimation [78.83305967085413]
This paper introduces a novel Pre-trained Spatial Temporal Many-to-One (P-STMO) model for 2D-to-3D human pose estimation task.
Our method outperforms state-of-the-art methods with fewer parameters and less computational overhead.
arXiv Detail & Related papers (2022-03-15T04:00:59Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.