Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for
Traffic Flow Prediction
- URL: http://arxiv.org/abs/2310.08328v2
- Date: Mon, 16 Oct 2023 15:28:44 GMT
- Title: Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for
Traffic Flow Prediction
- Authors: Xiao Xu, Lei Zhang, Bailong Liu, Zhizhen Liang and Xuefei Zhang
- Abstract summary: We propose a Transport-Hub-aware spatial-temporal adaptive graph transFormer for traffic flow prediction.
Specifically, we first design a novel spatial self-attention module to capture the dynamic spatial dependencies.
We also employ a temporal self-attention module to detect dynamic temporal patterns in the traffic flow data.
- Score: 10.722455633629883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a core technology of Intelligent Transportation System (ITS), traffic flow
prediction has a wide range of applications. Traffic flow data are
spatial-temporal, which are not only correlated to spatial locations in road
networks, but also vary with temporal time indices. Existing methods have
solved the challenges in traffic flow prediction partly, focusing on modeling
spatial-temporal dependencies effectively, while not all intrinsic properties
of traffic flow data are utilized fully. Besides, there are very few attempts
at incremental learning of spatial-temporal data mining, and few previous works
can be easily transferred to the traffic flow prediction task. Motivated by the
challenge of incremental learning methods for traffic flow prediction and the
underutilization of intrinsic properties of road networks, we propose a
Transport-Hub-aware Spatial-Temporal adaptive graph transFormer (H-STFormer)
for traffic flow prediction. Specifically, we first design a novel spatial
self-attention module to capture the dynamic spatial dependencies. Three graph
masking matrices are integrated into spatial self-attentions to highlight both
short- and long-term dependences. Additionally, we employ a temporal
self-attention module to detect dynamic temporal patterns in the traffic flow
data. Finally, we design an extra spatial-temporal knowledge distillation
module for incremental learning of traffic flow prediction tasks. Through
extensive experiments, we show the effectiveness of H-STFormer in normal and
incremental traffic flow prediction tasks. The code is available at
https://github.com/Fantasy-Shaw/H-STFormer.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
We propose a traffic flow physics-based transformation feature for Deep learning (DL) models for traffic flow forecasting.
This transformation incorporates Newell's uncongested and congested filters of traffic flows at the target locations, enabling the models to learn broader dynamics of the system.
An important advantage of our framework is its ability to be transferred to new locations where data is unavailable.
arXiv Detail & Related papers (2023-07-12T06:31:43Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
We propose STLGRU, a novel traffic forecasting model for predicting traffic flow accurately.
Our proposed STLGRU can effectively capture dynamic local and global spatial-temporal relations of traffic networks.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2022-12-08T20:24:59Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
We argue that such correlations are universal and play a pivotal role in traffic flow.
We propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor.
The proposed STNN model can be applied on any unseen traffic networks.
arXiv Detail & Related papers (2021-09-11T09:04:35Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Spatial-Temporal Tensor Graph Convolutional Network for Traffic
Prediction [46.762437988118386]
We propose a factorized Spatial-Temporal Graph Convolutional Network to deal with traffic speed prediction.
To reduce the computational burden, we take Tucker tensor decomposition and derive factorized a tensor convolution.
Experiments on two real-world traffic speed datasets demonstrate our method is more effective than those traditional traffic prediction methods.
arXiv Detail & Related papers (2021-03-10T15:28:07Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.