論文の概要: DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism
- arxiv url: http://arxiv.org/abs/2309.15324v1
- Date: Wed, 27 Sep 2023 00:10:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 14:25:04.014927
- Title: DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism
- Title(参考訳): DefectHunter: LLM駆動のブーストコンバータベースのコード脆弱性検出機構
- Authors: Jin Wang, Zishan Huang, Hengli Liu, Nianyi Yang, Yinhao Xiao,
- Abstract要約: DefectHunterは、Conformerメカニズムを利用した脆弱性識別のための革新的なモデルである。
このメカニズムは、畳み込みネットワークと自己意識を融合させ、局所的、位置的特徴とグローバル的、コンテンツに基づく相互作用の両方をキャプチャする。
- 参考スコア(独自算出の注目度): 3.9377491512285157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most pressing threats to computing systems is software vulnerabilities, which can compromise both hardware and software components. Existing methods for vulnerability detection remain suboptimal. Traditional techniques are both time-consuming and labor-intensive, while machine-learning-based approaches often underperform when applied to complex datasets, due to their inability to capture high-dimensional relationships. Previous deep-learning strategies also fall short in capturing sufficient feature information. Although self-attention mechanisms can process information over long distances, they fail to capture structural information. In this paper, we introduce DefectHunter, an innovative model for vulnerability identification that employs the Conformer mechanism. This mechanism fuses self-attention with convolutional networks to capture both local, position-wise features and global, content-based interactions. Furthermore, we optimize the self-attention mechanisms to mitigate the issue of excessive attention heads introducing extraneous noise by adjusting the denominator. We evaluated DefectHunter against ten baseline methods using six industrial and two highly complex datasets. On the QEMU dataset, DefectHunter exhibited a 20.62\% improvement in accuracy over Pongo-70B, and for the CWE-754 dataset, its accuracy was 14.64\% higher. To investigate how DefectHunter comprehends vulnerabilities, we conducted a case study, which revealed that our model effectively understands the mechanisms underlying vulnerabilities.
- Abstract(参考訳): コンピューティングシステムに対する最も差し迫った脅威の1つは、ソフトウェア脆弱性であり、ハードウェアとソフトウェアコンポーネントの両方を侵害する可能性がある。
既存の脆弱性検出方法はまだ最適以下である。
従来のテクニックは時間と労力の両方を消費するが、マシンラーニングベースのアプローチは、高次元の関係を捉えることができないため、複雑なデータセットに適用するとパフォーマンスが低下することが多い。
事前のディープラーニング戦略も、十分な機能情報を取得するには不十分である。
自己認識機構は、遠距離で情報を処理できるが、構造情報の取得に失敗する。
本稿では,DefectHunterについて紹介する。DefectHunterは,Conformer機構を利用した脆弱性識別の革新的なモデルである。
このメカニズムは、畳み込みネットワークと自己意識を融合させ、局所的、位置的特徴とグローバル的、コンテンツに基づく相互作用の両方をキャプチャする。
さらに, 自己注意機構を最適化し, 減音器を調整して異常ノイズを発生させる過度な注意ヘッドの問題を緩和する。
DefectHunterを6つの産業的および2つの非常に複雑なデータセットを用いて10のベースライン法と比較した。
QEMUデータセットでは、DefectHunterはPongo-70Bよりも20.62\%精度が向上し、CWE-754データセットでは14.64\%精度が向上した。
DefectHunterが脆弱性をどう理解するかを調べるために、我々はケーススタディを行い、このモデルが脆弱性の根底にあるメカニズムを効果的に理解していることを明らかにした。
関連論文リスト
- CRepair: CVAE-based Automatic Vulnerability Repair Technology [1.147605955490786]
ソフトウェア脆弱性は、現代のソフトウェアとそのアプリケーションデータの完全性、セキュリティ、信頼性に重大な脅威をもたらす。
脆弱性修復の課題に対処するため、研究者らは、学習に基づく自動脆弱性修復技術が広く注目を集めるなど、様々な解決策を提案している。
本稿では,システムコードのセキュリティ脆弱性を修正することを目的としたCVAEベースの自動脆弱性修復技術であるCRepairを提案する。
論文 参考訳(メタデータ) (2024-11-08T12:55:04Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Attention-GAN for Anomaly Detection: A Cutting-Edge Approach to
Cybersecurity Threat Management [0.0]
本稿では,異常検出に焦点をあてた,サイバーセキュリティ向上のための革新的な注意-GANフレームワークを提案する。
提案手法は、多様なリアルな合成攻撃シナリオを生成し、データセットを充実させ、脅威識別を改善することを目的としている。
GAN(Generative Adversarial Networks)と注意機構を統合することが提案手法の重要な特徴である。
attention-GANフレームワークは先駆的なアプローチとして登場し、高度なサイバー防御戦略のための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-02-25T01:10:55Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities [7.906207218788341]
本稿では,Transformer-based learning framework(V2W-BERT)を提案する。
自然言語処理,リンク予測,転送学習のアイデアを用いることで,従来の手法よりも優れる。
ランダムに分割されたデータの予測精度は最大97%、一時分割されたデータの予測精度は最大94%です。
論文 参考訳(メタデータ) (2021-02-23T05:16:57Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。