論文の概要: CRepair: CVAE-based Automatic Vulnerability Repair Technology
- arxiv url: http://arxiv.org/abs/2411.05540v1
- Date: Fri, 08 Nov 2024 12:55:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:57.835128
- Title: CRepair: CVAE-based Automatic Vulnerability Repair Technology
- Title(参考訳): CVAEによる自動脆弱性修復技術
- Authors: Penghui Liu, Yingzhou Bi, Jiangtao Huang, Xinxin Jiang, Lianmei Wang,
- Abstract要約: ソフトウェア脆弱性は、現代のソフトウェアとそのアプリケーションデータの完全性、セキュリティ、信頼性に重大な脅威をもたらす。
脆弱性修復の課題に対処するため、研究者らは、学習に基づく自動脆弱性修復技術が広く注目を集めるなど、様々な解決策を提案している。
本稿では,システムコードのセキュリティ脆弱性を修正することを目的としたCVAEベースの自動脆弱性修復技術であるCRepairを提案する。
- 参考スコア(独自算出の注目度): 1.147605955490786
- License:
- Abstract: Software vulnerabilities are flaws in computer software systems that pose significant threats to the integrity, security, and reliability of modern software and its application data. These vulnerabilities can lead to substantial economic losses across various industries. Manual vulnerability repair is not only time-consuming but also prone to errors. To address the challenges of vulnerability repair, researchers have proposed various solutions, with learning-based automatic vulnerability repair techniques gaining widespread attention. However, existing methods often focus on learning more vulnerability data to improve repair outcomes, while neglecting the diverse characteristics of vulnerable code, and suffer from imprecise vulnerability localization.To address these shortcomings, this paper proposes CRepair, a CVAE-based automatic vulnerability repair technology aimed at fixing security vulnerabilities in system code. We first preprocess the vulnerability data using a prompt-based method to serve as input to the model. Then, we apply causal inference techniques to map the vulnerability feature data to probability distributions. By employing multi-sample feature fusion, we capture diverse vulnerability feature information. Finally, conditional control is used to guide the model in repairing the vulnerabilities.Experimental results demonstrate that the proposed method significantly outperforms other benchmark models, achieving a perfect repair rate of 52%. The effectiveness of the approach is validated from multiple perspectives, advancing AI-driven code vulnerability repair and showing promising applications.
- Abstract(参考訳): ソフトウェア脆弱性は、現代のソフトウェアとそのアプリケーションデータの完全性、セキュリティ、信頼性に重大な脅威をもたらす、コンピュータソフトウェアシステムの欠陥である。
これらの脆弱性は、様々な産業に重大な経済的損失をもたらす可能性がある。
手動による脆弱性の修復は時間を要するだけでなく、エラーも起こりやすい。
脆弱性修復の課題に対処するため、研究者らは、学習に基づく自動脆弱性修復技術が広く注目を集めるなど、様々な解決策を提案している。
しかし,既存の手法では脆弱性データの学習に重点を置いて,脆弱性の多様さを無視し,不正確な脆弱性ローカライゼーションに苦しむ場合が多いため,システムコードのセキュリティ脆弱性を修正することを目的としたCVAEベースの自動脆弱性修復技術であるCRepairを提案する。
まず、モデルへの入力としてプロンプトベースの手法を用いて脆弱性データを前処理する。
次に,脆弱性特徴データを確率分布にマッピングするために因果推論手法を適用した。
マルチサンプル機能融合を用いて、多様な脆弱性特徴情報をキャプチャする。
実験により,提案手法が他のベンチマークモデルよりも有意に優れ,完全修復率は52%であることが示された。
このアプローチの有効性は、AI駆動のコード脆弱性の修復を進め、有望なアプリケーションを示す、複数の観点から検証されている。
関連論文リスト
- Enhancing Pre-Trained Language Models for Vulnerability Detection via Semantic-Preserving Data Augmentation [4.374800396968465]
本稿では,脆弱性検出のための事前学習言語モデルの性能向上を目的としたデータ拡張手法を提案する。
一連の代表的なコード事前訓練モデルの微調整に当社のデータセットを組み込むことで、最大10.1%の精度向上と23.6%のF1増加を達成することができる。
論文 参考訳(メタデータ) (2024-09-30T21:44:05Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Causative Insights into Open Source Software Security using Large
Language Code Embeddings and Semantic Vulnerability Graph [3.623199159688412]
オープンソースソフトウェア(OSS)の脆弱性は、不正アクセス、データ漏洩、ネットワーク障害、プライバシー侵害を引き起こす可能性がある。
最近のディープラーニング技術は、ソースコードの脆弱性を特定し、ローカライズする上で大きな可能性を示しています。
本研究は,従来の方法に比べてコード修復能力が24%向上したことを示す。
論文 参考訳(メタデータ) (2024-01-13T10:33:22Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
本稿では,REal-world vulnErabilities and Fixesをオープンソースリポジトリから収集するための自動収集フレームワークREEFを提案する。
脆弱性とその修正を収集する多言語クローラを開発し、高品質な脆弱性修正ペアをフィルタするためのメトリクスを設計する。
大規模な実験を通じて,我々の手法が高品質な脆弱性修正ペアを収集し,強力な説明を得られることを示す。
論文 参考訳(メタデータ) (2023-09-15T02:50:08Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Enabling Automatic Repair of Source Code Vulnerabilities Using
Data-Driven Methods [0.4568777157687961]
3つの観点から脆弱性修復のためのコード表現を改善する方法を提案する。
データ駆動型の自動プログラム修復モデルは、バグと修正されたコードのペアを使用して、コードのエラーを修正する変換を学習する。
この作業の期待される結果は、自動プログラム修正のためのコード表現の改善、特にセキュリティ脆弱性の修正である。
論文 参考訳(メタデータ) (2022-02-07T10:47:37Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities [7.906207218788341]
本稿では,Transformer-based learning framework(V2W-BERT)を提案する。
自然言語処理,リンク予測,転送学習のアイデアを用いることで,従来の手法よりも優れる。
ランダムに分割されたデータの予測精度は最大97%、一時分割されたデータの予測精度は最大94%です。
論文 参考訳(メタデータ) (2021-02-23T05:16:57Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。