論文の概要: Deep Learning in Deterministic Computational Mechanics
- arxiv url: http://arxiv.org/abs/2309.15421v1
- Date: Wed, 27 Sep 2023 05:57:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 16:48:55.836423
- Title: Deep Learning in Deterministic Computational Mechanics
- Title(参考訳): 決定論的計算力学における深層学習
- Authors: Leon Herrmann, Stefan Kollmannsberger
- Abstract要約: 本稿では,計算力学の応用よりも深層学習に焦点をあてる。
主な聴衆は、この分野に参入しようとしている研究者や、計算力学の深層学習の概観を得ようとする研究者である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of deep learning research, including within the field of
computational mechanics, has resulted in an extensive and diverse body of
literature. To help researchers identify key concepts and promising
methodologies within this field, we provide an overview of deep learning in
deterministic computational mechanics. Five main categories are identified and
explored: simulation substitution, simulation enhancement, discretizations as
neural networks, generative approaches, and deep reinforcement learning. This
review focuses on deep learning methods rather than applications for
computational mechanics, thereby enabling researchers to explore this field
more effectively. As such, the review is not necessarily aimed at researchers
with extensive knowledge of deep learning -- instead, the primary audience is
researchers at the verge of entering this field or those who attempt to gain an
overview of deep learning in computational mechanics. The discussed concepts
are, therefore, explained as simple as possible.
- Abstract(参考訳): 計算力学の分野を含むディープラーニング研究の急速な成長は、広範囲で多様な文学の体系をもたらした。
この分野における重要な概念と将来性のある方法論の同定を支援するため,決定論的計算力学における深層学習の概要を紹介する。
シミュレーション置換、シミュレーション強化、ニューラルネットワークとしての離散化、生成アプローチ、深層強化学習の5つの主要なカテゴリが特定され、探索されている。
本稿では,計算力学の応用よりも深層学習に焦点をあて,研究者がより効果的にこの分野を探索できるようにする。
そのため、このレビューは、深層学習に関する広範な知識を持つ研究者を対象とするのではなく、この分野に参入しようとしている研究者や、計算力学における深層学習の概観を得ようとしている研究者を主観している。
議論された概念は可能な限りシンプルに説明される。
関連論文リスト
- Towards Biologically Plausible Computing: A Comprehensive Comparison [24.299920289520013]
バックプロパゲーションは、教師あり学習のためのニューラルネットワークのトレーニングの基盤となるアルゴリズムである。
バックプロパゲーションの生物学的妥当性は、重量対称性、大域的誤差計算、二重位相学習の要求により疑問視される。
本研究では,望ましい学習アルゴリズムが満たすべき生物学的妥当性の基準を確立する。
論文 参考訳(メタデータ) (2024-06-23T09:51:20Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Deep Learning for Epidemiologists: An Introduction to Neural Networks [0.0]
深層学習の基礎を疫学的観点から紹介する。
本研究の目的は,ディープラーニングの医学的応用に読者が関与し,批判的に評価できるようにすることである。
論文 参考訳(メタデータ) (2022-02-02T22:52:18Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
Design -- Toward a Unified Approach: State-of-the-Art and Future Directions [0.0]
分子レベルでの操作特性による化合物の最適設計は、しばしば科学的な進歩とプロセスシステムの性能向上の鍵となる。
本稿では,コンピュータ支援分子設計の課題と課題について述べる。
論文 参考訳(メタデータ) (2020-05-18T14:17:51Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - A Survey of Deep Learning for Scientific Discovery [13.372738220280317]
私たちは、ディープラーニングにおけるコア問題における根本的なブレークスルーを、主にディープニューラルネットワークの進歩によって見てきた。
幅広い科学領域で収集されるデータの量は、サイズと複雑さの両方で劇的に増加しています。
これは、科学的な設定でディープラーニングを応用するための多くのエキサイティングな機会を示唆している。
論文 参考訳(メタデータ) (2020-03-26T06:16:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。