論文の概要: GAMMA: Graspability-Aware Mobile MAnipulation Policy Learning based on
Online Grasping Pose Fusion
- arxiv url: http://arxiv.org/abs/2309.15459v2
- Date: Sat, 2 Mar 2024 09:50:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 20:33:53.538188
- Title: GAMMA: Graspability-Aware Mobile MAnipulation Policy Learning based on
Online Grasping Pose Fusion
- Title(参考訳): gamma:オンライン把持姿勢融合に基づく把持性を考慮したモバイル操作ポリシー学習
- Authors: Jiazhao Zhang, Nandiraju Gireesh, Jilong Wang, Xiaomeng Fang, Chaoyi
Xu, Weiguang Chen, Liu Dai, and He Wang
- Abstract要約: 本稿では,オンライングルーピングポーズ融合フレームワークを利用した,把握可能性を考慮したモバイル操作手法を提案する。
予測された把握ポーズは、冗長で外れやすい把握ポーズを排除するためにオンラインで整理される。
つかみポーズをオンザフライで融合させることにより、つかみポーズの量と品質の両方を包含して、把握可能性を直接評価することができる。
- 参考スコア(独自算出の注目度): 10.449867601745899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile manipulation constitutes a fundamental task for robotic assistants and
garners significant attention within the robotics community. A critical
challenge inherent in mobile manipulation is the effective observation of the
target while approaching it for grasping. In this work, we propose a
graspability-aware mobile manipulation approach powered by an online grasping
pose fusion framework that enables a temporally consistent grasping
observation. Specifically, the predicted grasping poses are online organized to
eliminate the redundant, outlier grasping poses, which can be encoded as a
grasping pose observation state for reinforcement learning. Moreover,
on-the-fly fusing the grasping poses enables a direct assessment of
graspability, encompassing both the quantity and quality of grasping poses.
- Abstract(参考訳): 移動操作はロボットアシスタントの基本的なタスクであり、ロボットコミュニティ内で大きな注目を集めている。
モバイル操作に固有の重要な課題は、つかむために接近しながらターゲットを効果的に観察することである。
本研究では,時間的に一貫した把持観察を可能にするオンライン把持姿勢融合フレームワークを用いて,把持性を考慮した移動操作手法を提案する。
具体的には、予測された把持姿勢をオンラインに整理し、冗長で外れた把持姿勢を排除し、強化学習のための把持姿勢観察状態として符号化する。
また、把持姿勢を用いるオンザフライでは、把持姿勢の量と品質の両方を包含して、把持性を直接評価することができる。
関連論文リスト
- Self-Supervised Learning of Grasping Arbitrary Objects On-the-Move [8.445514342786579]
本研究では3つの完全畳み込みニューラルネットワーク(FCN)モデルを導入し,視覚入力から静的グリッププリミティブ,動的グリッププリミティブ,残留移動速度誤差を予測する。
提案手法は高い把握精度とピック・アンド・プレイス効率を実現した。
論文 参考訳(メタデータ) (2024-11-15T02:59:16Z) - Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
具体的キャプションを具現化したSelf-Explainable Affordance Learning (SEA)を紹介する。
SEAは、ロボットが意図を明確に表現し、説明可能な視覚言語キャプションと視覚能力学習のギャップを埋めることを可能にする。
本稿では, 簡便かつ効率的な方法で, 空き地と自己説明を効果的に組み合わせた新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-04-08T15:22:38Z) - Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
クラスに依存しない動き予測法は点雲全体の動きを直接予測する。
既存のほとんどのメソッドは、完全に教師付き学習に依存しているが、ポイントクラウドデータの手作業によるラベル付けは、手間と時間を要する。
3つの簡単な空間的・時間的正則化損失を導入し,自己指導型学習プロセスの効率化を図る。
論文 参考訳(メタデータ) (2024-03-20T02:58:45Z) - Self-Supervised Bird's Eye View Motion Prediction with Cross-Modality
Signals [38.20643428486824]
密集した鳥の視線(BEV)の動きを自己監督的に学習することは、ロボット工学と自律運転の新たな研究である。
現在の自己監督法は主に点雲間の点対応に依存する。
マルチモダリティデータを活用することで,これらの問題に効果的に対処する,新たなクロスモダリティ自己教師型トレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-01-21T14:09:49Z) - Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
本稿では,ロボットハンドアームシステムによる飛行物体の捕獲方法の学習を可能にするモジュラーフレームワークを提案する。
本フレームワークは,物体の軌跡予測を学習するオブジェクト状態推定器,(ii)捕捉対象のポーズのスコアとランク付けを学ぶキャッチポーズ品質ネットワーク,(iii)ロボットハンドをキャッチ前ポーズに移動させるように訓練されたリーチ制御ポリシ,(iv)ソフトキャッチ動作を行うように訓練された把握制御ポリシの5つのコアモジュールから構成される。
各モジュールと統合システムのシミュレーションにおいて、我々のフレームワークを広範囲に評価し、飛行における高い成功率を示す。
論文 参考訳(メタデータ) (2023-12-21T16:20:12Z) - Active-Perceptive Motion Generation for Mobile Manipulation [6.952045528182883]
移動マニピュレータのためのアクティブな知覚パイプラインを導入し,操作タスクに対して情報を与える動作を生成する。
提案手法であるActPerMoMaは,経路をサンプリングし,経路ワイズユーティリティーを演算することで,後退する水平方向にロボット経路を生成する。
両腕のTIAGo++ MoMaロボットを用いて,障害物のある散らばったシーンで移動体把握を行う実験において,本手法の有効性を示す。
論文 参考訳(メタデータ) (2023-09-30T16:56:52Z) - MotionHint: Self-Supervised Monocular Visual Odometry with Motion
Constraints [70.76761166614511]
モノクローナルビジュアル・オドメトリー(VO)のための新しい自己教師型アルゴリズムMotionHintを提案する。
我々のMotionHintアルゴリズムは、既存のオープンソースSSM-VOシステムに容易に適用できる。
論文 参考訳(メタデータ) (2021-09-14T15:35:08Z) - Self-Supervised Pillar Motion Learning for Autonomous Driving [10.921208239968827]
本研究では,点群からの自由監視信号と対カメラ画像を利用した学習フレームワークを提案する。
本モデルでは,確率的運動マスキングを付加した点雲に基づく構造整合性と,所望の自己超越を実現するためのクロスセンサ運動正規化を含む。
論文 参考訳(メタデータ) (2021-04-18T02:32:08Z) - Vision-Based Mobile Robotics Obstacle Avoidance With Deep Reinforcement
Learning [49.04274612323564]
障害物回避は、移動ロボットの自律ナビゲーションのための根本的かつ困難な問題です。
本稿では,ロボットが単一眼カメラにのみ依存しなければならない単純な3D環境における障害物回避の問題を検討する。
データ駆動型エンドツーエンドディープラーニングアプローチとして,障害回避問題に取り組む。
論文 参考訳(メタデータ) (2021-03-08T13:05:46Z) - Uncertainty-Aware Vehicle Orientation Estimation for Joint
Detection-Prediction Models [12.56249869551208]
オリエンテーションは、自律システムの下流モジュールにとって重要な特性である。
本稿では,既存のモデルを拡張し,共同物体検出と動き予測を行う手法を提案する。
さらに、この手法は予測の不確かさを定量化することができ、推定された向きが反転する確率を出力することができる。
論文 参考訳(メタデータ) (2020-11-05T21:59:44Z) - Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill
Primitives [89.34229413345541]
本稿では,制御器とその条件をエンドツーエンドに学習することで,落とし穴を回避する条件付け手法を提案する。
本モデルでは,ロボットの動きのダイナミックな画像表現に基づいて,複雑な動作シーケンスを予測する。
代表的MPCおよびILベースラインに対するタスク成功の大幅な改善を報告した。
論文 参考訳(メタデータ) (2020-03-19T15:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。